6 More about primes (non-examinable)
Bertrand postulated in 1845 that for every n∈N there is always a prime between n and 2n (n≤p<2n).
The primes 2,5,11,23,47,89,179,359,719,1439,2879 show it to be true for n≤211.
Bertrand checked it for n<3000000.
Chebychev (1850) gave a proof.
Erds (1932) gave an elementary proof based on the properties of \binom{2n}{n}.
Lemma 6.1 \begin{align*} \binom{2n}{n} \geq \frac{2^{2n}}{2n + 1}. \end{align*}
Proof. Since \binom{n}{k + 1} / \binom{n}{k} = \frac{n - k}{k + 1}, it is evident that \binom{n}{k} increases for k < \frac{n}{2}, and decreases for k > \frac{n}{2}. In particular, \binom{2n}{n} \geq \frac{2^{2n}}{2n + 1}, the maximum element is at least as big as the average (2^{2n} is the sum and we have 2n + 1 elements).
Lemma 6.2 If p \leq n is a prime dividing \binom{2n}{n}, then p \leq \frac{2n}{3}.
Proof. Suppose \frac{2n}{3} < p \leq n, then p \leq n < \frac{3}{2}p < 2p \leq 2n < 3p, so the numerator and denominator of \begin{align*} \frac{2n (2n - 1) \dots (n + 1)}{n (n - 1) \dots 3 \cdot 2 \cdot 1} \end{align*} are divisible by exactly one copy of p. ⨳ as it can then not divide it.
Lemma 6.3 If p is a prime and p^k \mid \binom{2n}{n}, then p^k \leq 2n.
Proof. The greatest power of p dividing n! = n (n-1) \dots 3 \cdot 2 \cdot 1. \left \lfloor \frac{n}{p} \right \rfloor is the no. of multiples of p upto n, \left \lfloor \frac{n}{p^2} \right \rfloor is the no. of multiples of p^2 upto n. So the greatest power is \left \lfloor \frac{n}{p} \right \rfloor +\left \lfloor \frac{n}{p^2} \right \rfloor +\left \lfloor \frac{n}{p^3} \right \rfloor \dots = \sum_{i \geq 1}\left \lfloor \frac{n}{p^i} \right \rfloor.
Hence, if k is a power of p dividing \binom{2n}{n} = \frac{2n !}{(n!)^2}, then \begin{align*} k &\leq \sum_{i \geq 1}\left \lfloor \frac{2n}{p^i} \right \rfloor - 2 \sum_{i \geq 1}\left \lfloor \frac{n}{p^i} \right \rfloor\\ &= \sum^l_{i = 1} \left(\left \lfloor \frac{2n}{p^i} \right \rfloor - 2\left \lfloor \frac{n}{p^i} \right \rfloor \right) \text{ where $l$ is the greatest power of $p$ s.t. $p^l \leq 2n$} \\ &\leq \sum_{i = 1}^k 1 \text{ since } \left \lfloor 2x \right \rfloor - 2 \left \lfloor x \right \rfloor \leq 1 \\ &= l \\ \text{so $k \leq l$ and thus $p^k \leq p^l \leq 2n$}. \end{align*}
Lemma 6.4 For all m \in \mathbb{N}, \underset{p \leq m \\ \text{$p$ prime}}{\prod} p \leq 4^m.
Proof. By induction on m. True for m = 2. If m > 2 is even, then \begin{align*} \prod_{p \leq m} p = \prod_{p \leq m - 1} p \leq 4^{m - 1} < 4^m. \end{align*} If m = 2k + 1 is odd, then all primes k + 2 \leq p \leq 2k + 1 divide \binom{2k + 1}{k} = \frac{(2k + 1)!}{k! (k + 1)!} = \frac{(2k + 1) 2k \dots (k + 2)}{k (k - 1) \dots 3 \cdot 2 \cdot 1} (as they divide the numerator but not denominator). Thus \prod_{k + 2 \leq p \leq 2k + 1} p \leq \binom{2k + 1}{k} = \binom{2k + 1}{k + 1} \leq \frac{2^{2k + 1}}{2} = 4^k. By the inductive hypothesis, \begin{align*} \prod_{p \leq m} p = \prod_{p < k + 1} p \cdot \prod_{k + 2 \leq p \leq 2k + 1} p \leq 4^{k + 1} \cdot 4^k = 4^{2k + 1} \end{align*}
Theorem 6.1 (Bertrand's Postulate) For all n \in \mathbb{N} s.t. n \geq 2, \exists prime p with n \leq p < 2n.
Proof. Clearly the prime factors of \binom{2n}{n} are all < 2n.
Suppose the theorem fails.
Then all prime factors of \binom{2n}{n} are in fact < n.
By Lemma 6.2, they are all < \frac{2}{3} n.
Consider the prime factorisation of \binom{2n}{n}.
By Lemma 6.3, each prime contributes \leq 2n to the factorisation.
Moreover, if p > \sqrt{2n}, then p contributes at most p to the factorisation (since p^2 > 2).
Now by Lemma 6.1 and 6.4
\begin{align*}
\frac{2^{2n}}{2n + 1} \leq \binom{2n}{n} &\leq \Pi_{p \leq \sqrt{2n}} p \Pi_{\sqrt{2n} < p < \frac{2}{3} n} p \\
&\leq (2n)^{\sqrt{2n}} \cdot \Pi_{p < \frac{2}{3} n} p \\
\text{by Lemma \@ref(lem:sfour), } \Pi_{p < \frac{2}{3} n} p &\leq 4^{\frac{2}{3} n} \\
&\leq (2n)^{\sqrt{2n}} \cdot 4^{\frac{2}{3}n} \\
\frac{4^n}{2n + 1} &\leq (2n)^{\sqrt{2n}} \cdot 4^{\frac{2}{3} n},
\end{align*} which fails when n is large.
How large? \begin{align*} 4^{\frac{n}{3}} &\leq (2n + 1)(2n)^{\sqrt{2n}} \\ \text{and } (2n + 1) &\leq (2n)^2 \leq (2n)^{\sqrt{2n}/3} \text{ for } n \geq 18 \\ \text{so } 4^\frac{n}{3} &\leq (2n)^{\frac{4}{3} \sqrt{2n}} \\ \text{or } 4^n &\leq (2n)^{4 \sqrt{2n}} \\ \text{with } r &= \sqrt{2n}, \text{ this is} \\ 4^{\frac{r^2}{2}} &\leq r^{8r} \\ \text{or } 4^r &\leq r^{16} \end{align*} which fails when r \geq 2^6 = 64. So proof holds when n \geq 2^{11}, and also true for smaller values of n as discussed at the beginning of the lecture.