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§0 Introduction

Text in blue is usually less important.

Example 0.1
Dice: outcomes 1, 2, . . . , 6.

• P(2) = 1
6 .

• P(multiple of 3) = 2
6 = 1

3 .

• P(not a multiple of 3) = 2
3

• P(prime) = 1
2 .

• P(prime or multiple of 3) = ������1
3

+ 1
2

= 5
6

.

= 4
6

= 2
3

.

P(prime or multiple of 3) = 1
3

+ 1
2

− 1
6

= 2
3
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§1 Formal Setup

Definition 1.1 (Sample Space)
The sample space Ω is a set of outcomes.

Definition 1.2 (σ-algebra)
• Let F a collection of subsets of Ω (called events).

• F is a σ-alegbra if

F1. Ω ∈ F .

F2. A ∈ F then Ac = Ω \ A ∈ F .

F3. ∀ countable collections (An)n∈N ∈ F a, the union ⋃n∈N An ∈ F also.
aA1 does not need to be countable, only the index

Remark 1. The motivation for F2 is so that P(Ac) = 1 − P(A) (the probability of not A is
defined as expected).

Definition 1.3 (Probability Measure)
Given σ-algebra F on Ω, function P : F → [0, 1]a is a probability measure if

P2. P(Ω) = 1.

P3. ∀ countable collections (An)n∈N of disjoint events in F :

P

⋃
n∈N

An

 =
∑
n∈N

P(An).

Then (Ω, F ,P) is a probability space.
aP1. P(A) ≥ 0

Example 1.1
Coming back to Example 0.1. Ω = {1, 2, . . . , 6} so
P(Ω) = P(1 or 2 or 3 or 4 or 5 or 6) = 1 and F is all subsets of Ω.

Question
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Why P : F → [0, 1]
and not P : Ω → [0, 1]?

If Ω is countable:

• In general: F = all subsets of Ω, i.e. P(Ω) (the power set).

• P(2) is shorthand for P({2}).

• P is determined by (P({w}), ∀ w ∈ Ω) (e.g. unfair dice).

If Ω is uncountable:

• E.g. Ω = [0, 1]. Want to choose a real number, all equally likely.

• If P ({0}) = α > 0 then P
({

0, 1, 1
2 , . . . , 1

n

})
= (n + 1)α E if n large as P > 1.

• So P({0}) = 0, or P({0}) is undefined.

• What about P
({

x : x ≤ 1
3

})
?

– ? “Add up” all P({x}) for x ≤ 1
3 . However this range is uncountable and

we can’t take a sum of uncountably many terms.

Aside

Question
Can we choose uniformly from an infinite countable set? (E.g. Ω = N or Ω =
Q ∩ [0, 1])

Answer
No it is not possible but that’s ok there ∃ lots of interesting probability measures of
N!

Proof. Suppose possible

• P({0}) = α > 0 ∀ ω ∈ Ω. Then P(Ω) =
∑

ω∈Ω P({ω}) =
∑

ω∈Ω α = ∞. E of
P2 : P(Ω) = 1.

• P({0}) = 0 ∀ ω ∈ Ω. Then P(Ω) =
∑

ω∈Ω P({ω}) =
∑

ω∈Ω 0 = 0.
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Proposition 1.1 (From the axioms)
• P(Ac) = 1 − P(A)

Proof. A, Ac are disjoint. A ∪ Ac = Ω.
=⇒ P(A) + P(Ac) =

P 3
P(Ω) =

P 2
1

• P(∅) = 0

• If A ⊆ B then P(A) ≤ P(B)

• P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

§1.1 Examples of Probability Spaces

Example 1.2 (Uniform Choice)
Ω finite, Ω = {ω1, . . . , ωn}, F = all subsets. uniform choice (equally likely)

P : F → [0, 1], P(A) = |A|
|Ω|

.

In particular: P({ω}) = 1
|Ω| ∀ ω ∈ Ω.

Example 1.3 (Choosing without replacement)
n indistinguishable marbles labelled {1, . . . , n}. Pick k ≤ n marbles uniformly at
random. Here: Ω = {A ⊆ {1, . . . , n}, |A| = k} |Ω| =

(n
k

)

Example 1.4 (Well-shuffled deck of cards)
Uniformly chosen permutation of 52 cards.

Ω = {all permutations of 52 cards}
|Ω| = 52!

P( first three cards
have the same suit) = 52 × 12 × 11 × 49!

52!
= 22

425
Note: = 12

51
× 11

50

Example 1.5 (Coincident Birthdays)
There are n people; what is the probability that at least two of them share a birthday?
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Assumptions:

• No leap years! (365 days)

• All birthdays are equally likely

Let Ω = {1, . . . , 365}n and F = P(Ω).
Let A = {at least two people share the same birthday} and so
Ac = {all n birthdays are different}.

P(Ac) = |Ac|
|Ω|

= 365 × 364 · · · × (365 − n + 1)
365n

P(A) = 1 − P(Ac)

Note that at n = 22, P(A) ≈ 0.476 and at n = 23, P(A) ≈ 0.507. So when there
are at least 23 people in a room, the probability that two of them share a birthday is
around 50%.

KEY IDEA: Calculating P(Ac) is easier than P(A).

7



§2 Combinatorial Analysis

§2.1 Subsets

Question
Let Ω be finite and |Ω| = n. How many ways to partition Ω into k disjoint subsets
Ω1, . . . , Ωk with |Ωi| = ni (with∑k

i=1 ni = n)?

Answer

M =
(

n

n1

)
Choose
first part

(
n − n1

n2

)
Then choose
second part

(
n − n1 − n2

n3

)
. . .

(
n − (n1 + · · · + nk−1)

nk

)
︸ ︷︷ ︸

=1

= n!
n1!�����(n − n1)!

× �����(n − n1)!
n2!((((((((n − n1 − n2)!

× ((((((((((((((
[n − (n + n1 + · · · + nk−1)]!

0!nk!

= n!
n1!n2! . . . nk!

=
(

n

n1, n2, . . . , nk

)
︸ ︷︷ ︸
Multinomial coefficient

Key sanity check

- Does ordering of the subsets matter?

E.g. Is Ω2 = {3, 4, 7}, Ω3 = {1, 5, 8} equal to Ω3 = {3, 4, 7}, Ω2 = {1, 5, 8}? No,
ordering does matter as we put elements first in the second subset then the third.

§2.2 Random Walks

Ω = {(X0, X1, . . . , Xn) : X0 = 0, |Xn − Xk−1| = 1 ∀ k = 1, . . . , n}.

|Ω| = 2n (we can go either up or down at each k)
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P(Xn = n) = 1
2n

P(Xn = 0) = 0 if n is odd
What about P(Xn = 0) when n is even

Idea - Choose n
2 ks for Xk = Xk−1 + 1 and the rest Xk = Xk−1 − 1 (i.e. go up half the

time and down the other half).

P(Xn = 0) = 2−n

(
n
n
2

)

= n!
2n
(

n
2 !
)2

Question
What happens when n is large?

§2.3 Stirling’s Formula

Notation. Let (an), (bn) be two sequences. Say an ∼ bn as n → ∞ if an
bn

→ 1 as n → ∞.

Example 2.1
n2 + 5n + 6

n ∼ n2

Example 2.2 (Non-Example)
exp

(
n2 + 5n + 6

n

)
≁ exp

(
n2)

Theorem 2.1 (Stirling)
n! ∼

√
2πnn+ 1

2 e−n as n → ∞.

Theorem 2.2 (Weaker Version)
log n! ∼ n log n.

Proof. log(n!) = log 2 + · · · + log n.
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“Upper Integral”∫ n

1
log x dx ≤ log n! ≤

“Lower Integral”∫ n+1

1
log x dx

n log n − n + 1︸ ︷︷ ︸
∼n log n

≤ log n! ≤ (n + 1) log(n + 1) − n︸ ︷︷ ︸
∼n log n

Key idea: Sandwiching between lower/upper integrals. It was useful that

• log x is increasing

• log x has a nice integral!

§2.4 (Ordered) compositions

Definition 2.1 (Composition)
A composition ofmwith k parts is a sequence (m1, . . . , mk) of non-negative integers
with m1 + · · · + mk = m.

Example 2.3

3 + 0 + 1 + 2 = 6 6= 1 + 2 + 0 + 3 = 6
⋆ ⋆ ⋆ || ⋆ | ⋆ ⋆

There is a bijection between compositions and sequences of m stars and (k − 1) dividers.
So the number of compositions is

(m+k−1
m

)
.

Comment: Easy to mistake k with k − 1 in no. of dividers.
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§3 Properties of Probability measures

Let (Ω, F ,P) be a probability space and P : F → [0, 1].

Definition 3.1 (Countable additivity)
P3 : P(

⋃
n∈N An) =

∑
n∈N P(An) for (An)n∈N disjoint.

Question
What if the sets are not disjoint?

§3.1 Countable sub-additivity

Proposition 3.1 (Countable sub-additivity)
Let (An)n∈N be a sequence of events in F . Then

P

⋃
n∈N

An

 ≤
∑
n∈N

P(An).

May also be called a union bound.

Intuition:

∑
n∈N P(An) “double counts” some sub-events.

Proof. Idea: Rewrite ⋃
n∈N An as a disjoint union. Define B1 = A1 and

Bn = An \ (A1 ∪ · · · ∪ An−1)
∈F(by Sheet 1)

∀ n ≥ 2.
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So

• ⋃
n∈N Bn =

⋃
n∈N An.

• (Bn)n∈N is disjoint (by construction).

• Bn ⊆ An =⇒ P(Bn) ≤ P(An)
Q4, Sheet 1

P

⋃
n∈N

An

 = P

⋃
n∈N

Bn

 =
P 3 on (Bn)

∑
n∈N

P (Bn) ≤
∑
n∈N

P (An)

§3.2 Continuity

Proposition 3.2 (Continuity)
Let (An)n∈N be an increasing sequence of events in F , i.e. An ⊆ An+1 ∀ n. Then
P(An) ≤ P(An+1). So P(An) converges as n → ∞.a

In fact: limn→∞ P(An) = P (
⋃

n∈N An).
aAs probabilities are bounded above by 1 and increasing.

For motivation try Q6, Sheet 1.

Proof. Let us reuse the Bns from the previous subsection.

• ⋃n
k=1 Bk = An (disjoint union).

• ⋃
n∈N Bn =

⋃
n∈N An

12



P(An) =
n∑

k=1
P(Bk) n→∞→

∑
k≥1

P(Bk) = P

⋃
n∈N

Bn

 = P

⋃
n∈N

An



§3.3 Inclusion-Exclusion Principle

Background: P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
Similarly: A, B, C ∈ F

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(B ∩ C) − P(C ∩ A) + P(A ∩ B ∩ C).

Proposition 3.3 (Inclusion-Exclusion Principle)
Let A1, . . . , An ∈ F , then:

P
(

n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai) −
∑

1≤i1<i2≤n

P(Ai1 ∩ Ai2) +
∑

1≤i1<i2<i3≤n

P(Ai1 ∩ Ai2 ∩ Ai3) − . . .

+ (−1)n+1P(A1 ∩ · · · ∩ An)

=
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1P
(⋂

i∈I

Ai

)

Note: ∑1≤i1<i2<i3≤n is the sum of all triples that are distinct and unordered.

Proof. By induction. For n = 2 it holds (Q4e, Sheet 1).

P
(

n⋃
i=1

Ai

)
= P

((
n−1⋃
i=1

Ai

)
∪ An

)

13



Using n = 2 case we get:

= P
(

n−1⋃
i=1

Ai

)
+ P(An) − P

((
n−1⋃
i=1

Ai

)
∩ An

)

We want to break down the final element on the RHS

Idea:
(

n−1⋃
i=1

Ai

)
∩ An =

n−1⋃
i=1

(Ai ∩ An)

If we apply IEP to ⋃n−1
i=1 (Ai ∩ An) we need to calculate ⋂i∈J (Ai ∩ An)⋂

i∈J

(Ai ∩ An) =
⋂

i∈J∪{n}
Ai, J ⊂ {1, . . . , n − 1}

P
(

n⋃
i=1

Ai

)
=

∑
J⊂{1,...,n−1}

J 6=∅

(−1)|J |+1P
(⋂

i∈J

Ai

)

n−1 case

+P(An)

−
∑

J⊂{1,...,n−1}
J 6=∅

(−1)|J |+1P

 ⋂
i∈J∪{n}

Ai


n−1 case on (Ai∩An)

J ∪ {n} 7→ I.

−(−1)|J |+1 7→ (−1)|I|+1

=
∑

I⊂{1,...,n−1}
I 6=∅

(−1)|I|+1P
(⋂

i∈I

Ai

)

Just changed the labels

+P(An)

+
∑

I⊂{1,...,n}
n∈I, |I|≥2

(−1)|I|+1P
(⋂

i∈I

Ai

)

=
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1P
(⋂

i∈I

Ai

)
.

Let us check that we have indeed counted all subsets I .
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•
∑

I⊂{1,...,n−1}
I 6=∅

(−1)|I|+1P
(⋂

i∈I

Ai

)
accounts for all subsets where n /∈ I .

• P(An) accounts for {n}

•
∑

I⊂{1,...,n}
n∈I, |I|>2

(−1)|I|+1P
(⋂

i∈I

Ai

)
accounts for all subsets where n ∈ I and I 6= {n}.

§3.4 Bonferroni Inequalities

Question
What if you truncate IEP (Inclusion-Exclusion Principle)?

Proposition 3.4 (Bonferroni Inequality)
Recall: Countable sub-additivity - P(∪Ai) ≤

∑
P(Ai).

P
(

n⋃
i=1

Ai

)
≤

r∑
k=1

(−1)k+1 ∑
i1<i2<···<ik

P(Ai1 ∩ · · · ∩ Aik
) if r is odd

P
(

n⋃
i=1

Ai

)
≥

r∑
k=1

(−1)k+1 ∑
i1<i2<···<ik

P(Ai1 ∩ · · · ∩ Aik
) if r is even

Proof. By induction on r and n. Let r be odd

P
(

n⋃
i=1

Ai

)
= P

(
n−1⋃
i=1

Ai

)
+ P(An) − P

(
n−1⋃
i=1

(Ai ∩ An)
)

P
(

n−1⋃
i=1

Ai

)
≤

∑
J⊂{1,...,n−1}

1≤|J |≤r

(−1)|J |+1P
(⋂

i∈J

Ai

)

n − 1 case.

P
(

n−1⋃
i=1

(Ai ∩ An)
)

≥
∑

J⊂{1,...,n−1}
1≤|J |≤r−1a

(−1)|J |+1P

 ⋂
i∈J∪{n}

Ai


r − 1 case on (Ai ∩ An)
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Using the same rearranging as in the proof of Inclusion-Exclusion Principle

P
(

n⋃
i=1

Ai

)
≤

∑
I⊂{1,...,n}

1≤|I|≤r

(−1)|I|+1P
(⋂

i∈I

Ai

)
.

The case of r being even is similar, simply note all three inequalities are reversed.
aJ doesn’t include n and we only want r elements in the intersection

Question
When is it good to truncate at e.g. r = 2?

§3.5 Counting with IEP

Uniform probability measure on Ω, |Ω| < ∞. P(A) = |A|
|Ω| ∀ A ⊆ Ω. Then

∀ A1, . . . , An ⊆ Ω

|A1 ∪ · · · ∪ An| =
n∑

k=1
(−1)k+1 ∑

i1<···<ik

|Ai ∩ · · · ∩ Aik
|

(and similarly for Bonferroni Inequalities).

Example 3.1 (Surjections)
What is the probability that a function f : {1, . . . , n} → {1, . . . , m}, n ≥ m is a
surjection? Let Ω = {f : {1, . . . , n} → {1, . . . , m}} and A = {f ∈ Ω : Image(f) =
{1, . . . , m}}.
∀ i ∈ {1, . . . , m} define Bi = {f ∈ Ω : i 6∈ Image(f)}.

Key observations:

• A = Bc
1 ∩ . . . Bc

m

= (B1 ∪ · · · ∪ Bm)c

• |Bi1 ∩ · · · ∩ Bik
| is nice to calculate.

|Bi1 ∩ · · · ∩ Bik
| = |{f ∈ Ω : i1, . . . , ik /∈ Image(f)|
= (m − k)n

IEP → |B1 ∪ · · · ∪ Bm| =
m∑

k=1
(−1)k+1 ∑

i1<···<ik

|Bi1 ∩ · · · ∩ Bik
|

same for all i1, . . . , ik

16



=
m∑

k=1
(−1)k+1

(
m

k

)
(m − k)n

|A| = mn − |Bi1 ∪ · · · ∪ Bik
|

=
m∑

k=0
(−1)k

(
m

k

)
(m − k)n

Example 3.2 (Derangements)
What is the probability that a permutation has no fixed points? Derangements can
be useful in a Secret Santa.
Ω = {permuations of {1, . . . , n}} and the derangements, D, are {σ ∈ Ω : σ(i) 6=
i ∀ i = 1, . . . , n}.

Question
Is P(D) = |D|

|Ω| large or small (e.g. when n → ∞?)

∀ i ∈ {1, . . . , n} : Ai = {σ ∈ Ω : σ(i) = i}.
Key observations:

• D = Ac
1 ∩ . . . Ac

n = (
⋃n

i=1 Ai)c .

• P(Ai1 ∩ · · · ∩ Aik
) = (n − k)!

n!

IEP → P
(

n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1 ∑
i1<···<ik

P(Ai1 ∩ · · · ∩ Aik
)

=
n∑

k=1
(−1)k+1

(
n

k

)
(n − k)!

n!

=
n∑

k=1
(−1)k+1 1

k!

P(D) = 1 − P
(

n⋃
i=1

Ai

)

= 1 −
n∑

k=1

(−1)k+1

k!

=
n∑

k=0

(−1)k

k!

lim
n→∞

P(D) =
∞∑

k=0

(−1)k+1

k!

= e−1 ≈ 0.37.
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Remark 2.

• What if instead Ω′ = {all functions f : {1, . . . , n} to itself}?

D = {f ∈ Ω′ : f(i) 6= i ∀ i = 1, . . . , n}.

P(D) = (n − 1)n

nn

=
(

1 − 1
n

n)
lim

n→∞
D = e−1.

• Wewould liked to have calculated P(D) by doing
(

n−1
n

)n
as we have n choices

eachwith probability n−1
n . Wewill be allowed to do this soon! See Example 3.6

• f(i) is a random quantity associated to Ω. We will be allowed to study f(i) as
a random variable soon.

• We are allowed to toss a fair coin n times, Ω = {H, T}n. But we have not yet
studied tossing an unfair coin n times.

§3.6 Independence

(Ω, F ,P) as before.

Definition 3.2 (Indepence)
Events A, B ∈ F are independent (A ⊥⊥ B) if

P(A ∩ B) = P(A)P(B).

A countablea collection of events (An) are independent if ∀ distinct i1, . . . , ik
b we

have:

P(Ai1 ∩ · · · ∩ Aik
) =

k∏
j=1

P(Aij ).

aincluding finite
bk is finite

Remark 3 (Caution). “Pairwise independence” does not imply independence.

Example 3.3
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Ω = {(H, H), (H, T ), (T, H), (T, T )}

P({ω}) = 1
4

∀ ω ∈ Ω.

A = first coin is H = {(H, H), (H, T )}.

B = second coin is H = {(T, H), (H, H)}.

C = both coins have the same outcome = {(T, T ), (H, H)}.

P(A) = P(B) = P (C) = 1
2

.

A ∩ B = A ∩ C = B ∩ C = {(H, H)}.

P(A ∩ B) = P(A ∩ C) = P(B ∩ C) = 1
4

. Pairwise independence ✓

P(A ∩ B ∩ C) = 1
4

6= P(A)P(B)P(C). Independence ×

Example 3.4 (Independence)
• Ω′ = {all functions f : {1, . . . , n} to itself}

Ai = {f ∈ Ω′ : f(i) = i}.

P(Ai) = nn−1

nn
= 1

n

P(Ai1 ∩ · · · ∩ Aik
) = nn−k

nn

= 1
nk

=
k∏

j=1
P(Aij )

Here: (Ai) are independent events.

• Ω = {σ : permutation of {1, . . . , n}}
Ai = {σ ∈ Ω : σ(i) = i}

P(Ai) = (n − 1)!
n!

= 1
n

.

i 6= j P(Ai ∩ Aj) = (n − 2)!
n!

= 1
n(n − 1)

6= P(Ai)P(Aj)

Here: (Ai) are not independent events.
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§3.6.1 Properties

Claim 3.1
If A is independent of B, then A is also independent of Bc.

Proof.

P(A ∩ Bc) = P(A) − P(A ∩ B)
= P(A) − P(A)P(B)
= P(A)[1 − P(B)]
= P(A)P(Bc)

Claim 3.2
A is independent of B = Ω and of C = ∅

Proof. P(A ∩ Ω) = P (A) = P(A)P(Ω)
=1

and so A ⊥⊥ ∅ by Claim 1.

§3.7 Conditional Probability

(Ω, F ,P) as before.

Consider B ∈ F with P(B) > 0, A ∈ F

Definition 3.3 (Conditional Probability)
The conditional probability of A given B is P(A | B) = P(A∩B)

P(B) .

“The probability of A if we know B happened”. (e.g. revealing information in succes-
sion)

Example 3.5
A, B independent.

P(A | B) = P(A ∩ B)
P(B)

= P(A)P(B)
P(B)

= P(A)

“Knowing whether B happened doesn’t affect the probability of A”.
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§3.7.1 Properties

• P1 - P(A | B) ≥ 0

• P2 - P(B | B) = 1 = P(Ω | B)

• P3 - (An) disjoint events ∈ F :

Claim 3.3

P

⋃
n∈N

An | B

 =
∑
n∈N

P(An | B)

Proof.

P

⋃
n∈N

An | B

 = P ((
⋃

n An) ∩ B)
P(B)

= P (
⋃

n (An ∩ B))
P(B)

, ∪(An ∩ B) is a disjoint union

=
∑

n P(An ∩ B)
P(B)

=
∑
n∈N

P(An | B)

Summary: Use definition and apply P1, P2, P3 to the numerator.

P(• | B) is a function from F → [0, 1] that satisfies the rules to be a probability measure
on Ω.

Aside?

Consider Ω′ = B (especially in finite or countable setting). Let F ′ = P(B).
Then (Ω′, F ′,P(• | B)) also satisfies rules to be a probability measure on Ω′.

P(A ∩ B) = P(A)P(B | A) (1)
P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2 | A1)P(A3 | A1 ∩ A2) . . .P(An | A1 ∩ · · · ∩ An−1)
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Example 3.6
Uniform choice of a permutation (σ(1), σ(2), . . . , σ(n)) ∈ Σn.

Claim 3.4

P (σ(k) = ik | σ(1) = i, . . . , σ(k − 1) = ik−1) , i1, . . . , ik−1 distinct.

=
{

0 if ik ∈ {i1, . . . , ik−1}.
1

n−k+1
a else

aThis is an example of (Ordered) compositions

Proof.

P (σ(k) = ik | σ(1) = i, . . . , σ(k − 1) = ik−1) = P(σ(1) = i, . . . , σ(k) = ik)
P(σ(1) = i, . . . , σ(k − 1) = ik−1)

=
(n−k)!

n!
(n−k+1)!

n!

= (n − k)!
(n − k + 1)!

= 1
n − k + 1

P(σ(1) = i, . . . , σ(k) = ik) = 0 if ik ∈ {i1, . . . , ik−1}.

§3.7.2 Law of Total Probability and Bayes’ Formula

Definition 3.4 (Partition)
(B1, B2, . . . )a ∈ Ω is a partition of Ω if:

• Ω =
⋃

n Bn

• (Bn) are disjoint
afinite or countable

Theorem 3.1 (Law of Total Probability)
(Bn) a finite or countable partition of Ω with Bn ∈ F ∀ n s.t. P(Bn) > 0. Then
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∀ A ∈ F :

P(A) =
∑

n

P(A | Bn)P(Bn).

Also know as “Partition Theorem”.

Proof. Note that ⋃n (A ∩ Bn) = A.

P(A) =
∑
n∈N

P(A ∩ Bn)

=
∑

n

P(A | Bn)P(Bn) by Equation (1)

Theorem 3.2 (Bayes’ Formula)
Same setup as above

P(Bn | A) = P(A | Bn)P(Bn)∑
m P(A | Bm)P(Bm)

.

Let n = 2: P(B | A)P(A) = P(A | B)P(B) = P(A ∩ B)

Proof.

P(Bn | A) = P(A ∩ Bn)
P(A)

= P(A | Bn)P(Bn)∑
m P(A | Bm)P(Bm)

.

Example 3.7 (Lecture course)
Consider a Lecture course which has 2/3 of the lectures on weekdays and 1/3 on
weekends. Let

P(forget notes | weekday) = 1
8

P(forget notes | weekend) = 1
2

What is P(weekend | forget notes)? Let B1 = {weekday}, B2 = {weekend} and
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A = {forget notes}.
By LTP (Law of Total Probability): P(A) = 2

3 × 1
8 + 1

3 × 1
2 = 1

4 .
By Bayes’ Formula: P(B2 | A) = 1

3 × 1
2/1

4 = 2
3 .

Example 3.8 (Disease Testing)
Suppose p are infected and (1 − p) are not. P(tests positive | infected) = 1 − α and
P(tests positive | not infected) = β where α, β ∈ (0, 1).

We want to work out P(infected | test positive).

By LTP: P(test positive) = p(1 − α) + (1 − p)β.
By Bayes’ Formula: P(infected | test positive) = p(1−α)

p(1−α)+(1−p)β .

Suppose p � β then p(1 − α) � (1 − p)β so P(infected | test positive) ∼ p(1−α)
(1−p)β ∼ p

β

which is small.

Example 3.9 (Simpson’s Paradox)
Scientists ask: do jelly beans make you tongue change colour?

Oxford Change No change % change
Blue 15 22 41%
Green 5 8 38%

∆ = 3%

Cambridge Change No change % change
Blue 10 3 77%
Green 23 14 62%

∆ = 15%

Total Change No change % change
Blue 25 25 50%
Green 28 22 56%

∆ = −6%

The conclusion from this example should be that the Cambridge methodology is
different to the Oxford one rather than anything about blue/ green jelly beans.a

Let A = {change colour}, B = {blue}, BC = {green}, C = {Cambridge}, Cc =
{Oxford}.

P(A | B ∩ C) > P(A | Bc ∩ C)
P(A | B ∩ Cc) > P(A | Bc ∩ Cc)
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6=⇒ P(A | B) > P(A | Bc)
aObviously this is a frivolous example however if we changed Oxford to November 2021, Cambridge
to January 2021 andweweremeasuring vaccine efficacy for different vaccineswewould get similar
results. And it would be reasonable to conclude that the main underlying factor was a change in
the viral landscape rather than waning efficacy.

Theorem 3.3 (Law of Total Probability for Conditional Probabilities)
Suppose C1, C2, . . . a partition of B.

P(A | B) =
∑

n

P(A | Cn)P(Cn | B)

Proof.

P(A | B) = P(A ∩ B)
P(B)

= P (A ∩ (
⋃

n Cn))
P(B)

= P (
⋃

n(A ∩ Cn))
P(B)

=
∑

n P(A ∩ Cn)
P(B)

=
∑

n P(A | Cn)P(Cn)
P(B)

=
∑

n

P(A | Cn)P(B ∩ Cn)
P(B)

Cn ⊂ B =⇒ B ∩ Cn = Cn

=
∑

n

P(A | Cn)P(Cn | B)

Non Examinable

Special Case:

• If all P(Cn) are equal then so are P(Cn | B). Note∑n P(Cn | B) = 1.1

• If P(A | Cn) are all equal.

1P(Cn | B) = P(Cn∩B)
P(B) = P(Cn)

P(B) .
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Then P(A | B) = P(A | Cn).

Example 3.10 (Well-shuffled deck of cards)
Uniformly chosen permutation, σ ∈ Σ52, of 52 cards. {1, 2, 3, 4} are aces. Let
A = {σ(1), σ(2) are aces}, B = {σ(1) is an ace} = {σ(1) ≤ 4}, C1 = {σ(1) =
1}, . . . , C4 = {σ(1) = 4}.

Note:

• P(A | Ci) = P(σ(2) ∈ {1, 2, 3, 4} | σ(1) = i) i ≤ 4

= 3
51

by Example 3.6

• P(C1) = · · · = P(C4) = 1
52 .

So P(A | B) = 3
51 and P(A) = P(B)P(A | B) = 4

52 × 3
51
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§4 Discrete Random Variables

Motivation: Roll two dice. Ω = {1, . . . , 6}2 = {(i, j) : 1 ≤ i, j ≤ 6}. If we restrict our
attention to:

• the first dice e.g. {(i, j) : i = 3}.

• the sum of the dice e.g. {(i, j) : i + j = 8}.

• the max of the dice e.g. {(i, j) : i, j ≤ 4, i or j = 4}.

This is annoying and we want to move on from sets.

Goal: “Random real-valued measurements”, we want the value of the first dice to be X
and the sum to be X + Y …

Definition 4.1 (Discrete Random Variable)
A discrete random variable X on a probability space (Ω, F ,P) is a function X :
Ω → R s.t.

• {ω ∈ Ω : X(ω) = x} ∈ F

• Image(X) if finite or countable (subset of R).

• We abbreviate {ω ∈ Ω : X(ω) = x} as {X = x}. So P(X = x) is valid.

• Often Image(X) = Z or N0 or {0, 1} etc. not {Heads or Tails}.

If Ω is finite or countable and F = P(Ω) both blue bullet points hold automatically.

Example 4.1 (Part II Applied Probability)

“random arrival process”. Let Ω = {countable subsets (a1, a2, . . . ) of (0, ∞)} and
Nt = number of arrivals by time t = |{ai : ai ≤ t}| ∈ N0 is a discrete RV (random
variable) for each time t.

Definition 4.2 (Probability Mass Function)
The probability mass function of discrete RV X is the function pX : R → [0, 1]
given by pX(x) = P(X = x) ∀ x ∈ R.
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Note.

• if x /∈ Image(X) then pX(x) = P({ω ∈ Ω : X(ω) = x}) = P(∅) = 0.

•
∑

x∈Im(X)
pX(x) =

∑
x∈Im(X)

P({ω ∈ Ω : X(ω) = x}
disjoint

)

= P

 ⋃
x∈Im(X)

{ω ∈ Ω : X(ω) = x}


= P(Ω)
= 1

Example 4.2 (Indicator function)
For event A ∈ F , define 1A : Ω → R by

1A(ω) =
{

1 if ω ∈ A

0 else

1A is a discrete RV with Image = {0, 1}. p1A(1) = P(1A = 1) = P(A), p1A(0) =
P(1A = 0) = P(Ac) and p1A(x) = 0 ∀ x /∈ {0, 1}.

This encodes “did A happen” as a real number.

Remark 4. Given a pmf pX (probability mass function), we can always construct a prob-
ability space (Ω, F ,P) and a RV defined on it with this pmf.

• Ω = Im(X) i.e. {x ∈ R : pX(x) > 0}

• F = P(Ω)

• P({x}) = pX(x) and extend to all A ∈ F

§4.1 Discrete Probability Distributions

§4.1.1 Finite Ω

Definition 4.3 (Bernoulli Distribution - “(biased) coin toss”)
If X ∼ Bern(p) where p ∈ [0, 1] then Im(X) = {0, 1}, pX(1) = P(X = 1) = p and
pX(0) = 1 − p.
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Example 4.3
1A ∼ Bern(p) with p = P(A).

Definition 4.4 (Binomial Distribution)
If X ∼ Bin(n, p) where n ∈ Z+ and p ∈ [0, 1] then Im(X) = {0, 1, . . . , n}, pX(k) =
P(X = k) =

(n
k

)
pk(1 − p)n−k. ∑n

k=0 pX(k) = (p + (1 − p))n = 1.

The binomial distribution can be used to model the number of heads when a coin is
tossed n times.

§4.1.2 More than one RV

Motivation: Roll a dice with outcome X ∈ {1, 2, . . . , 6}. Events: A = {1 or 2}, B =
{1 or 2 or 3}, C = {1 or 3 or 5}. 1A ∼ Bern

(
1
3

)
, 1B ∼ Bern

(
1
2

)
, 1C ∼ Bern

(
1
2

)
.

Note: 1A ≤ 1B for all outcomes
but 1A ≤ 1C for all outcomes is false.

Definition 4.5 (Independent RVs)
Let X1, . . . , Xn be discrete RVs. We say X1, . . . , Xn are independent if:

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) . . .P(Xn = xn) ∀ x1, . . . , xn ∈ R.

(suffices to check ∀ xi ∈ Im(Xi))

Example 4.4
X1, . . . , Xn independent RVs each with the Bernoulli(p) distribution. Study Sn =
X1 + · · · + Xn. Then

P(Sn = k) =
∑

x1+···+xn=k
xi∈{0,1}

P(X1 = x1, . . . , Xn = xn)

=
∑

x1+···+xn=k

P(X1 = x1) . . .P(Xn = xn)

=
∑

x1+···+xn=k

p|{i:xi=1}|(1 − p)|{i:xi=0}|

=
∑

x1+···+xn=k

pk(1 − p)n−k
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=
(

n

k

)
pk(1 − p)n−k.

So Sn ∼ Bin(n, p).

Example 4.5 (Non-example)
(σ(1), σ(2), . . . , σ(n)) a uniform permutation.

Claim 4.1
σ(1) and σ(2) are not independent.

Suffices to find i1, i2 s.t. P(σ(1) = i1, σ(2) = i2) 6= P(σ(1) = i1)P(σ(2) = i2). E.g.
P(σ(1) = 1, σ(2) = 1) = 0 6= P(σ(1) = 1)P(σ(2) = 1)

=1/n×1/n

Consequence of definition

Let X1, . . . , Xn be independent. Then P(X1 ∈ A1, . . . , Xn ∈ An) = P(X ∈
A1) . . .P(Xn ∈ An) ∀ A1, . . . , An ⊂ R countable.

§4.1.3 Ω = N - “Ways of choosing a random integer”

Definition 4.6 (Geometric Distribution (“Waiting for success”))
If X ∼ Geo(p) where p ∈ (0, 1). Im(X) = {1, 2, . . . },
pX(k) = P((k-1) failures, then success on the kth trial) = (1 − p)k−1p. Check:∑

k≥1(1 − p)k−1p = p
∑

t≥0(1 − p)t = p
1−(1−p) = 1.

Alternatively: “Count how many failures before a success”
Im(Y ) = {0, 1, 2, . . . }, pY (k) = P(k failures, then success on the (k+1)th trial).
Check: ∑k≥0(1 − p)kp = 1.

The geometric distribution can be used to model the number of coin tosses until we get
a head.

Definition 4.7 (Poisson Distribution)
If X ∼ Po(λ) (or Poi(λ)) with λ ∈ (0, ∞). Im(X) = {0, 1, 2, . . . } and P(X = k) =
e−λλk/k! ∀ k ≥ 0. Check: ∑k≥0 P(X = k) = e

λ ∑
k≥0

λk

k! = eλeλ.

Motivation: Consider Xn ∼ Bin(n, λ
n)
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Example 4.6 (“Arrival proccess”)

Split time interval [0, λ] into n small intervals.

•• Probability of an arrival in each interval is p, independently across intervals.

• Total no. of arrivals is Xn.

P(Xn = k) =
(

n

k

)(
λ

n

)k (
1 − λ

n

)n−k

Fix k and let n → ∞

= n!
nk(n − k)!

× λk

k!
no n

×
(

1 − λ

n

)n

→e−λ

×
(

1 − 1
n

)−k

→1

n!
nk(n − k)!

= n(n − 1) . . . (n − k + 1)
nk

= 1 ×
(

1 − 1
n

)
×
(

1 − 2
n

)
× · · · ×

(
1 − k − 1

n

)
→ 1 There are a fixed number of terms all converging to 1

P(Xn = k) →
n→∞

e−λ λk

k!
.

We might want to say Bin(n, λ
n) converges to Po(λ), but what does convergence of

random variables mean?

§4.2 Expectation

(Ω, F ,P) and X a discrete RV. For now: X only takes non-negative values. “X ≥ 0”

Definition 4.8 (Expectation)
The expectation of X (or expected value or mean)

E[X] =
∑

x∈Im(X)
xP(X = x)

=
∑
ω∈Ω

X(ω)P({ω})
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“Average of values taken by X , weighted by pX”.

Example 4.7 (Uniform Dice)
X uniform on {1, 2, . . . , 6}

E[X] = 1
6

· 1 + 1
6

· 2 + · · · + 1
6

· 6

= 3.5

Note. E[X] need not be in Im(X).

Example 4.8 (Binomial Distribution)
Let X ∼ Binomial(n, p)

E[X] =
n∑

k=0
kP(X = k)

=
n∑

k=0
k

(
n

k

)
pk(1 − p)k

Trick: k

(
n

k

)
= k × n!

k! × (n − k)!

= n!
(k − 1)!(n − k)!

= n

(
n − 1
k − 1

)

E[X] = n
n∑

k=1

(
n − 1
k − 1

)
pk(1 − p)k

= np
n∑

k=1

(
n − 1
k − 1

)
pk−1(1 − p)k

= np
n−1∑
l=0

(
n − 1

l

)
pl(1 − p)(n−1)−l

pmf of Bin(n−1,p)

= np(p + (1 − p))n−1

= np.

Note. We would like to say:

E[Bin(n, p)] = E[Bern(p)] + · · · + E[Bern(p)]
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We will be able to do this soon.

Example 4.9 (Poisson Distribution)
Let X ∼ Poisson(λ)

E[X] =
∑
k≥0

kP(X = k)

=
∑
k≥0

k · e−λ λk

k!

=
∑
k≥1

e−λ λk

(k − 1)!

= λ
∑
k≥1

e−λ λk−1

(k − 1)!
pmf of Poisson(λ)

= λ.

Note. We would like to say

E[Poisson(λ)] ≈ E
[
Bin

(
n,

λ

n

)]
= λ

It is not true in general that P(Xn = k) ≈ P(X = k) =⇒ E[Xn] ≈ E[X]

Not important

If X can take on any real value (not necessarily X ≥ 0)

E[X] =
∑

x∈Im(X)
xP(X = x)

unless: A,
∑
x>0

x∈Im(X)

xP(X = x) = +∞ and B,
∑
x<0

x∈Im(X)

xP(X = x) = −∞.

Then we say E[X] is not defined. Do we really want to study ∞ + 2
3(−∞)

Summary:

• A and B, E[X] is not defined.

• A but not B, E[X] = +∞.2

2Some people say not defined instead of letting E[X] = ±∞
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• B but not A, E[X] = −∞.

• neither A nor B, X is then integrable i.e. E[X] absolutely converges.

Example 4.10
Most examples in the course are integrable except:

• P(X = n) = 6
π2

1
n2 for n ≥ 1. Note that∑P(X = n) = 1.

Then E[X] =
∑ 6

π2
1
n = +∞.

• P(X = n) = 3
π2

1
n2 for n ∈ Z\{0}. Then E[X] is not defined. “It’s symmetric so

E[X] = 0”, we have decided that this is wrong to prevent many things going
wrong in second and third year courses in probability.

Example 4.11 (Indicator Function)
E[1A] = P(A).

§4.2.1 Properties of Expectation

Proposition 4.1
If X ≥ 0, then E[X] ≥ 0 with equality iff P(X = 0) = 1.

Proof. E[X] =
∑

x∈Im(X)
x 6=0

xP(X = x)

Proposition 4.2 (Linearity of expectation)
Given random variables X, Y (both integrable) on same probability space ∀ λ, µ ∈
R

E[λX + µY ] = λE[X] + µE[Y ]
Similarly E[λ1X1, + · · · + λnXn] = λ1E[X1] + · · · + λnE[Xn]a

aholds for countably infinite collection though proof is omitted until more analysis experience.

Note. Independence is NOT a condition.
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Proof. If Ω is countable:

E[λX + µY ] =
(((((((((((((((∑
z∈Im(λX+µY )

zP(λX + µY = z) awkward

=
∑
ω∈Ω

(λX(ω) + µY (ω))P({ω})

= λ
∑
ω∈Ω

X(ω)P({ω}) + µ
∑
ω∈Ω

Y (ω)P({ω})

= λE[X] + µE[Y ].

Aside - Special Cases

1. If λ, c ∈ R then:

a) E[X + c] = E[X] + c

b) E[λX] = λE[X]

2. a) X, Y random variables (both integrable) on same probability space. E[X +
Y ] = E[X] + E[Y ].

b) in fact λ, µ ∈ R E[λX + µY ] = λE[X] + µE[Y ] (similarly E[λ1, X1, + · · · +
λnXn] = λ1E[X1] + · · · + λnE[Xn])

Corollary 4.1
X ≥ Y a then E[X] ≥ E[Y ].
aX(ω) ≥ Y (ω) ∀ ω ∈ Ω

Proof.

X = (X − Y ) + Y

E[X] = E[X − Y ] + E[Y ]
X − Y ≥ 0 =⇒ E[X − Y ] ≥ 0 by Proposition 4.1.

Example 4.12 (Counting Problems)
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(σ(1), . . . , σ(n)) uniform on Σn. Z = |{i : σ(i) = i}| = number of fixed points. Let
Ai = {σ(i) = i}, recall from Example 3.4 Ais not independent.

Key step:

Z = 1A1 + · · · + 1An

E[Z] = E[1A1 + · · · + 1An ]
= E[1A1 ] + · · · + E[1An ] by Linearity of expectation
= P(A1) + · · · + P(An) by Example 4.11

= 1
n

n = 1.

Note. Same answer as Bin(n, 1
n)

Proposition 4.3
If X takes values in {0, 1, 2, . . . } then

E[X] =
∑
k≥1

P(X ≥ k)

Proof. One can carefully re-arrange the summandswhich is left as an exercise to the
reader.

Alternative. Write X =
∑

k≥1 1X≥k
a then take E[X]:

E[X] = E
[∑

1X≥k

]
=
∑

E[1X≥k]

=
∑

P(X ≥ k)

aSanity check: let X = 7, 1X≥1 = · · · = 1X≥7 = 1 whilst 1X≥8 = 1X≥9 = · · · = 0.

Claim 4.2 (Markov’s Inequality)
Let X ≥ 0 be a random variable. Then ∀ a > 0:

P(X ≥ a) ≤ E[X]
a

The LHS is interesting, e.g. if we want to bound the probability of an extreme out-
come, whilst the RHS is easy to study.
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Note. Is a = E[X]
2 useful? No, we already know probabilities are less than 2.

If a is large it might be useful

Proof. Observe X ≥ a1X≥a
a and take E

E[X] ≥ aE[1X≥a]
= aP(X ≥ a)

aCheck: If X ∈ [0, a) then RHS = 0 else RHS = a.

Note. Markov’s Inequality is also true for continuous RVs.

§4.2.1 Studying E[f(X)]

Let f : R → R be a function. Then f(X) is also a random variable3.

Claim 4.3

E[f(X)] =
∑

x∈Im(X)
f(x)P(X = x)a.

aif it exists

Proof. Let A = Im(f(x)) = {f(x) : x ∈ Im(X)}. Starting with RHS∑
x∈Im(X)

f(x)P(X = x) =
∑
y∈A

∑
x∈Im(X)
f(x)=y

f(x)P(X = x)

=
∑
y∈A

y
∑

x∈Im(X)
f(x)=y

P(X = x)

=
∑
y∈A

yP(f(X) = y) by additivity

= E[f(X)]

3X : Ω → R so f(X) : Ω → R.
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§4.3 Variance

Motivation

Un ∼ Uniform({−n, −n + 1, . . . , n})
Vn ∼ Uniform({−n, n})
Zn = 0
Sn = random walk for n steps

∼ n − 2 Bin
(

n,
1
2

)
All of these have E = 0.

Variance is a way to “measure how concentrated a RV is around its mean”.

Definition 4.9
The variance of X is:

Var(X) = E
[
(X − E[X])2

]

Proposition 4.4
Var(X) ≥ 0 with equality ⇐⇒ P(X = E[X]) = 1 (as (X − E[X])2 so by Proposi-
tion 4.1).

Definition 4.10 (Alternative characterisation)

Var(X) = E
[
X2
]

− (E[X])2 (≥ 0)

Proof. Write µ = E[X]

Var(X) = E
[
(X − µ)2

]
= E

[
X2 − 2µX + µ2

]
= E[X2] − 2µE[X]

µ

+µ2

= E[X2] − µ2
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Proposition 4.5 (Properties)
If λ, c ∈ R

• Var(λX) = λ2 Var(X).

• Var(X + c) = Var(X)

Proof.

E[X + c] = µ + c

Var(X + c) = E
[(

X + c − (µ + c)2
)]

= E
[
(X − µ)2

]
= Var(X).

Example 4.13 (Poisson Distribution)
Let X ∼ Poisson(λ)

Var(X) = E[X2] − λ2

“Falling factorial trick”: sometimes easier to calculate E[X(X − 1)] than E[X2]

E[X(X − 1)] =
∑
k≥2

k(k − 1)
function

e−λ λk

k!
PMF

= λ2e−λ
∑
k≥2

λk−1

(k − 2)!

eλ

= λ2

E[X2] = E[X(X − 1)] + E[X]
= λ2 + λ

Var(X) = λ

Example 4.14 (Geometric Distribution)
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Let Y ∼ Geom(p) where Y ∈ N.

E[Y ] = 1
p

, Var(Y ) = 1 − p

p2 .

Proof left as an exercise.

Note. λ large: Var(x) = E[X], more concentrated
p small: Var(Y ) ≈ 1

p2 = (E[X])2.

Example 4.15 (Bernouli Distribution)
Let X ∼ Bern(p).

E[X] = 1 × p = p

E[X2] = 12 × p = p

Var(X) = p − p2

= p(1 − p)

Example 4.16 (Binomial Distribution)
Let X ∼ Bin(n, p)

E[X] = np

E
[
X2
]

= ugly

§4.3.1 Sums of RVs

Goal: Study Var(X1 + · · · + Xn). Do the Xis need to be independent.

Proposition 4.6 (Preliminary: Expectation of Product of RVs)
If X, Y are independent RVs and f, g are functions R → R.
Then: E[f(X)g(Y )] = E[f(X)]E[g(Y )] “Splits as a product” .

Example 4.17
E[XY ] = E[X]E[Y ]
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Example 4.18
Let f(x) = g(x) = zx (or etx).

Proof. (X, Y discrete)

LHS =
∑

x,y∈Im
f(x)g(y)P(X = x, Y = y)

=
∑

x,y∈Im
f(x)g(y)P(X = x)P(Y = y)

=

∑
x∈Im

f(x)P(X = x)

∑
y∈Im

g(x)P(Y = y)


= E[f(X)]E[g(Y )]

Proposition 4.7 (Sums of independent RVs)
Let X1, . . . , Xn be independent. Then

Var(X1 + · · · + Xn) = Var(X1) + · · · + Var(Xn)

Proof. (Suffices to Prove (STP) n = 2). Say E[X] = µ, E[Y ] = ν

Var(X + Y ) = E
[
(X + Y − µ − ν)2

]
= E

[
(X − µ)2

]
+ E

[
(Y − ν)2

]
+ 2E[(X − µ)(Y − ν)].

= Var(X) + Var(Y ) + 2E[X − µ]E[Y − ν]
= Var(X) + Var(Y ).

Example 4.19 (Binomial)
Going back to Binomial Distribution, Var(Bin(n, p)) = np(1 − p).

Goal: Study Var(X + Y ) when X, Y not independent.

Definition 4.11 (Covariance)
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Let X, Y be two RVs. Their covariance is

Cov(X, Y ) = E [(X − E[X])(Y − E[Y ])]

“Measures howdependent X, Y are and inwhich direction” (X large =⇒ Y larger
if Cov > 0 else Y smaller).

Proposition 4.8 (Properties)

Cov(X, Y ) = Cov(Y, X)
Cov(X, X) = Var(X)

Definition 4.12 (Alternative Characterisation)

Cov(X, Y ) = E[XY ] − E[X]E[Y ]

Proof.

Cov(X, Y ) = E [(X − µ)(Y − ν)]
= E[XY ] − µE[Y ]

ν

−ν E[X]
µ

+µν

= E[XY ] − µν.

Proposition 4.9 (More Properties)
Let λ ∈ R

Cov(λ, X) = 0
Cov(X + λ, Y ) = Cov(X, Y )

Cov(λX, Y ) = λ Cov(X, Y )
Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y )

Covariance is linear in each argument i.e. Cov(
∑

λiXi, Y ) =
∑

λi Cov(Xi, Y ) and
Cov(

∑
λiXi,

∑
µjYj) =

∑n
i=1

∑m
j=1 λiµj Cov(Xi, Yj).

Proposition 4.10 (Sums of RVs)
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Var
(

n∑
i=1

Xi

)
= Cov

(
n∑

i=1
Xi,

n∑
i=1

Xi

)

=
n∑

i=1
Var(Xi) +

∑
i 6=j

Cov(Xi, Xj)a

aor 2
∑

i<j
Cov(Xi, Xj)

Proposition 4.11
X, Y independent =⇒ Cov(X, Y ) = 0, the converse is false.

Example 4.20
Let Y = −X , Var(Y ) = Var(X). So Var(X + Y ) = Var(0) = 0 6= Var(X) + Var(Y ).

Example 4.21 (Uniform Permutation)
Let (σ(1), . . . , σ(n)) be uniformly chosen on Σn. Let Ai = {σ(i) = i} and
N = 1A1 + · · · + 1An (N is the number of fixed points).

E[N ] = n × 1
n

= 1

Ai and Aj are not independent

Var(1A1) = 1
n

(
1 − 1

n

)
Cov(1Ai , 1Aj ) = E[1Ai1Aj ] − E[1Ai ]E[1Aj ]

= E[1Ai∩Aj ] − E[1Ai ]E[1Aj ]
= P(Ai ∩ Aj) − P(Ai)P(Aj)

= 1
n(n − 1)

− 1
n

× 1
n

= 1
n2(n − 1)

> 0

Note: Cov doesn’t depend on i, j

Var(N) =
n∑

i=1
Var(1Ai) +

∑
i 6=j

Cov(1Ai , 1Aj )
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= n × n

(
1 − 1

n

)
+ n(n − 1) × 1

n2(n − 1)

= 1 − 1
n

+ 1
n

= 1.

Compare with Bin
(
n, 1

n

)
: E = 1, Var = n × 1

n

(
1 − 1

n

)
= 1 − 1

n .

§4.3.2 Chebyshev’s Inequality

Proposition 4.12 (Chebyshev’s Inequality)
Let X be a RV, E[X] = µ finite, Var(X) = σ2 < ∞.

P(|X − µ| ≥ λ) ≤ Var(X)
λ2

Remember the proof, not the statement.

Proof. Idea: Apply Markov’s Inequality to (X − µ)2.

P
(
(X − µ)2 ≥ λ2

)
≤ E

[
(X − µ)2]

λ2

= Var(X)
λ2

Danger: Applying Markov’s Inequality to |X − µ|, E [|X − µ|] is less nice than
E
[
(X − µ)2].

Comments

• Chebyshev’s Inequality gives better bounds than Markov’s Inequality (decays
with λ2 instead of λ).

• We can apply it to all RVs, not just those ≥ 0.

• Caveat: We need Var(X) < ∞ which is a stronger condition than E[X] < ∞.

Definition 4.13 (Standard Deviation)√
Var(X) is the standard deviation, σ, of X .

It has the same “units” as X but notmany nice properties so Var is generally preferred.

We can rewrite Chebyshev as P(|X − µ| ≥ kσ) ≤ 1/k2
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§4.4 Conditional Expectation

Setting: (Ω, F ,P).
Recall the definition of Conditional Probability.

Definition 4.14 (Conditional Expectation)
B ∈ F with P(B) > 0, X a RV. The conditional expectation is

E[X | B] = E[X1B]
P(B)

Example 4.22 (Uniform Dice)
Let X be a dice, uniform on {1, . . . , 6}.

E[X | X prime] =
1
6 [0 + 2 + 3 + 0 + 5 + 0]

1
2

= 1
3

(2 + 3 + 5)

= 10
3

.

Definition 4.15 (Alternative Characterisation)

E[X | B] =
∑

x∈Im X

xP(X = x | B).

Proof.

RHS =
∑ xP({X = x} ∩ B)

P(B)

=
∑
x 6=0

x∈Im X

xP(X1B = x)
P(B)

Note: E[X1B] =
∑
x 6=0

x∈Im X

xP(X1B = x)

Proposition 4.13 (Law of Total Expectation)
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Let (B1, B2, . . . ) be a finite or countably-infinite partition of Ω with Bn ∈ F ∀ n s.t.
P(Bn) > 0. X a RV.

E[X] =
∑

n

E[X | Bn]P(Bn).

Example 4.23
Let X = 1A we recover the Law of Total Probability.

Proof.

RHS =
∑

n

E[X1Bn ]

= E [X · (1B1 + · · · + 1Bn)] by Linearity of expectation
= E[X · 1]
= E[X].

Application: Two stage randomness where (Bn) describes what happens in stage 1.

Example 4.24 (Sums of random number of terms)
Let (Xn)n≥1 be IID and N ∈ {0, 1, 2, . . . } be a random index independent of (Xn).
Sn = X1 + · · · + Xn with E[Xn] = µ so E[Sn] = nµ. Then

E[SN ] =
∑
n≥0

E[SN | N = n]P(N = n)

=
∑

E[Sn]P(N = n)a

=
∑
n≥0

nµP(N = n)

= µE[N ].
aKEY STEP E[SN | N = n] = E[Sn | N = n] = E[Sn] last step follows as Sn and {N = n} are
independent.

§4.5 Random Walks

Definition 4.16 (Random Walk)
Let (Xn)n≥1 be IID RVs then Sn = x0 + X1 + · · · + Xn. (S0, S1, S2, . . . ) is a random
process called a RandomWalk started from x0.
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§4.5.1 Simple Random Walk (SRW) on Z - Main example in our course

Definition 4.17 (Simple Random Walk)
A simple random walk has P (Xi = +1) = p and P(X = −1) = q = 1 − p. x0 ∈ Z
and is often 0.
It is “symmetric” in the special case where p = q = 1

2 .

Example 4.25
P(S2 = x0) = pq + qp = 2pq

Useful interpretation: A gamble repeatedly plays a game where he wins £1 with P = p,
loses £1 with P = q.
Often: stops at £0.

Question
Suppose the gambler starts with £x at time 0. What is the probability he reaches
£a before £0. (0 < x < a)

Notation. Px(·) = P(· | x0 = x) “measure of RW started from x0.”

Answer
Key idea: Conditional on S1 = z, (S1, S2, . . . ) is a random walk started from z.
Apply Law of Total Probability

Px(S hits a before 0) =
∑ a

Interpret this.

Px(S hits a before 0 | S1 = z)Px(S1 = z)

=
∑

z

Pz(S hits a before 0)Px(S1 = z)

let hx = Px(S hits a before 0).
S1 = x ± 1
hx = phx+1 + qhx−1.
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Important to specify boundary conditions: h0 = 0, ha = 1

Solving Linear Recurrence Equations
phx+1 − hx + qhx−1 = 0 is a homogenous equation whose solutions form a vector
space. We want to find two LI solutions and we guess hx = λx So

pλx+1 − λx + qλx−1 = 0
pλ2 − λ + q = 0

λ = 1,
q

p

Case q 6= p

hx = A + B

(
q

p

)x

Use BCs to find A,B:

x = 0 : h0 = 0 = A + B

x = a : ha = 1 = A + B

(
q

p

)a

hx =

(
q
p

)x
− 1(

q
p

)a
− 1

.

Case p = q = 1
2 :

Note hx = x , “x is the average of x + 1 and x − 1”.
General solution: hx = A + Bx

h0 = 0 = A

ha = 1 = Ba

hx = x

a
aSubscript: z ∈ Im(S1) but we will not bother with that any more

Probability sanity check: p = q = 1
2 . “Fair game”

Study: Expected profit if you start from £x and play until time T .

Ex[ST ] = aPx(ST = a) + 0 × Px(ST = 0)
= ahx = x

Fits our intuition for fair games. ✓
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Question
Suppose the gambler starts with £x at time 0. What is the expected absorption time,
T = min{n ≥ 0 : Sn = 0 or Sn = a}. “first time S hits {0, a}”

Answer
Apply Law of Total Expectation
We want Ex[T ] (E[T ] when we start from x) which we label as τx

τx = Ex[T ]

= p

Interpret this.

Ex[T | S1 = x + 1] a + qEx[T | S1 = x − 1]
= pEx+1[T + 1] + qEx−1[T − 1]
= p(1 + Ex+1[T ]) + q(1 + Ex−1[T ])
= 1 + pτx+1 + qτx−1

Boundary conditions: τ0 = τa = 0 “We’re already there” .

We already solved the homogenous case of this equation previously. We want to
find a particular solution, guess: “one level more complicated than general solution”

p 6= q: Guess: τx = x
q−p works as a particular solution

p = q = 1
2 : Guess τx = Cx2 might work

Sub in: C

2
(x + 1)2 − Cx2 + C

2
(x − 1)2 = −1

C = −1
τx = A + Bx − x2

τ0 = τa = 0 and τx ≥ 0
∴ τx = x(a − x)

a“As if we started from (x + 1) and incremented time by one unit.”

§4.5.2 Unbounded RW: “Gambler’s Ruin’

Px(hit 0) = lim
a→∞

Px(hit 0 before a)

= lim
a→∞

1 − hx
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=
{

( q
p)x p > q

1 p ≤ q

When p = 1
2
: Ex[time to hit 0] ≥ Ex[time to hit 0 or a]

= x(a − x) → ∞ as a → ∞

Key conclusion: Tx (time to hit 0 from x) is for p = 1
2 finite with probability 1 and has

infinite expectation.

Comment (non - examinable)

Alternative derivation of E[T1] = ∞.
E[T2] = 2E[T1] as going from 2 → 1 is the same as going from 1 → 0.

E[T1] = 1
2

× 1 + 1
2

(1 + E[T2])

= 1 + E[T1]

We conclude that E[T1] = ∞.
insertpicture

§4.6 Generating Functions

Definition 4.18 (Probability Generating Function)
Let X be a RV taking values in {0, 1, 2, . . . }. The probability generating function
of X is

GX(z) = E
[
zX
]

=
∑
k≥0

zkP(X = k).

Analytic comment: GX : (−1, 1) → R.
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Idea: “A pgf encodes the distribution of X as a function with nice analytic properties.”

Example 4.26 (Bernoulli)
Let X ∼ Bern(p)

GX(z) = z0P(X = 0) + zP(X = 1)
= (1 − p) + pz.

Example 4.27 (Poisson)
Let X ∼ Poi(λ)

GX(z) =
∑
k≥0

zke−λ λk

k!

= e−λ
∑
k≥0

(λz)k

k!

= e−λeλz

= eλ(z−1)

Note. GX(0) = 00P(X = 0) = P(X = 0).

Proposition 4.14 (Recovering PMF from PGF)
P(X = n) = 1

n!G
(n)
X (0)

Proof. Idea: Differentiate n times

dn

dzn
GX(z) =

∑
k≥0

dn

dzn
(zk)P(X = k)

=
∑
k≥0

k!
(k − n)!

zk−nP(X = k)

=
∑
k≥n

k!
(k − n)!

zk−nP(X = k)

=
∑
l≥0

(l + n)!
l!

zlP(X = l + n)

dn

dzn
GX(0) = n!P(X = n).
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Key fact: PGF determines PMF/distribution exactly.

Note. GX(1)4 =
∑

k≥0 P(X = k) = 1.

Proposition 4.15 (Recoving other probablistic qunatities)

G
(n)
X (1) = E[X(X − 1) . . . (X − n + 1)

Falling Factorial.

]

Proof.

G
(n)
X (1) =

∑
k≥n

k(k − 1) . . . (k − n + 1)
function of k

P(X = k)

= E[X(X − 1) . . . (X − n + 1)]

Proposition 4.16 (Variance in terms of pgf)

Var(X) = G′′
X(1) + G′

X(1) −
[
G′

X(1)
]2

Proof.

E
[
X2
]

= E[X(X − 1)] + E[X]

= G′′
X(1) + G′

X(1)

Idea: Find general E[P (X)] (P (X) is a polynomial) using E[falling factorials of X].

Linear Algebra aside

The falling factorials 1, X, X(X − 1), . . . form a basis for R[X] (vector space of polyno-
mials).

Proposition 4.17 (PGF for sum of independent RVs)

4Technical Comment: GX(1) means limz↑1 GX(z) if the domain is (−1, 1). In particular G′
x(1) is possible
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Let X1, . . . , Xn be independent RVs with pgfs GX1 , . . . , GXn . Let X = X1 + · · ·+Xn.

GX(z) = GX1(z) . . . GXn(z)

Special case: Xi are IID, GX(z) = (GX1(z))n. Much nicer than PMF of X!

Proof.

GX(z) = E
[
zX
]

= E
[
zX1+...XN

]

= E

 zX1

function
of X1

zX2 . . . zXn

function
of Xn


= E

[
zX1

]
. . .E

[
zXn

]
as Xi are independent so by Proposition 4.6

= GX1(z) . . . GXn(z).

Example 4.28 (Binomial)
Let X ∼ Bin(n, p)

X = X1 + · · · + Xn, Xi IID Bern(p)
GX(z) = (1 − p + pz)n.

Example 4.29 (Q6, Sheet 3)
Let X ∼ Poi(λ) and Y ∼ Poi(µ).

GX(z) = eλ(z−1), GY (z) = eµ(z−1)

Study Z = X + Y

GZ(z) = GX(z)GY (z)
= eλ(z−1)eµ(z−1)

= e(λ+µ)(z−1)

PGF of Poi(λ + µ)

So X + Y ∼ Poi(λ + µ).
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Proposition 4.18 (PGF for random sums)
Let X1, X2, . . . be IID with the same distribution as X . X takes values in
{0, 1, 2, . . . , } and let N be a RV taking values in {0, 1, 2, . . . } independent of (Xn).

GX1+···+XN
= GN (GX(z))

Proof.

E
[
zX1+...XN

]
=
∑
n≥0

E
[
zX1+···+XN | N = n

]
P(N = n) by Law of Total Expectation

=
∑
n≥0

E
[
zX1+···+Xn | N = n

]
P(N = n) Replace with conditioning

=
∑
n≥0

E
[
zX1+···+Xn

]
P(N = n) (N, Xi) independent so get rid of conditioning

=
∑
n≥0

E
[
zX1

]
. . .E

[
zXn

]
P(N = n) (Xi)s independent

=
∑
n≥0

(GX(z))n P(N = n)

= GN (GX(z))

Example 4.30 (Bernoulli - Q7, Sheet 3)
Let Xi ∼ Bern(p) and N ∼ Poi(λ).

GXi(z) = (1 − p) + pz

GN (s) = eλ(s−1)

Interpretation: “Poisson thinning”
“Poi(λ) misprints, each gets found with P = 1 − p”

Y = X1 + · · · + XN

GY (z) = GN (GXi(z))
= eλ(1−p+pz−1)

= eλp(z−1)

PGF of Poi(λp)

In general the PMF X1 + · · · + XN is horrible whilst GN (GX(z)) is nice.
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§4.7 Branching Process

“Modelling growth of a population”

Definition 4.19 (Random branching tree)
Let X be a RV on {0, 1, 2, . . . }. There is one individual at generation 0 and each
individual has a random number of children with distribution X .

Goal:

• Study number of individuals in each generation

• Total population size - is it finite or infinite?

Reduction: Let Zn = be the number of individuals in generation n. Z0 = 1, Z1 ∼ X ,
Zn+1 = X

(n)
1 + · · · + X

(n)
Zn

where X
(n)
k are IID with distribution X and independent of

Zn. “X
(n)
k = number of children of kth individual in generation n.”

Note. If Zn = 0 =⇒ Zn+1 = Zn+2 = · · · = 0.

Theorem 4.1
E[Zn] = (E[X])n

Proof. Zn+1 is a random sum so E[Zn+1] = E[X]E[Zn]. By induction the result fol-
lows.

Notation. µ = E[X] =⇒ E[Zn] = µn.

Notation. Let G be the PGF of X and Gn the PGF of Zn.
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Theorem 4.2
Gn(z) = G(. . . G(z) . . . )a.
aSometimes written as Gn(z), but this is confusing notation so we won’t use it

Proof. Gn+1(z) = Gn(G(z)) by PGF for random sums and so result follows by in-
duction.

Question
What is the probability the population has goes extinct?

Definition 4.20 (Extinction Probability by generation n)
The probability that the population is extinct by generation n is qn = P(Zn = 0).

Definition 4.21 (Extinction Probability)
The probability that the population goes extinct is q = P(Zn = 0 for any n ≥ 1), i.e.
the population size is finite.

Note. {Zn = 0} ⊆ {Zn+1 = 0} as Zn = 0 =⇒ Zn+1 = 0. Also {Zn = 0 for any n ≥ 1} =⋃
n≥1{Zn = 0}.

Theorem 4.3
P(Zn = 0) ↑ P(

⋃
n≥1{Zn = 0})a, i.e. qn ↑ q as n → ∞.

a↑ is convergence with an increasing sequence.

Proof. By Continuity.

There are 3 cases to consider

• µ < 1 - subcritical

• µ = 1 - critical

• µ > 1 - supercritical

The degenerate case P(X = 1) = 1 is boring so we exclude it.
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Theorem 4.4
q = 1 ⇐⇒ µ = E[X] ≤ 1.a
aThis does not hold in the degenerate case obviously.

Remark 5. Interesting that q depends on X only through E[X].

Interpretation: Consider a pandemic spreading through a population, obviously it can-
not infect infinite people. Instead we take “finite” to mean e.g. 100 people are infected
out of a large population and “infinite” might mean the model stops making sense/ a
significant positive proportion are infected.

Baby Proof - (Subcritical).

P(Zn ≥ 1) ≤ E[Zn]
1

by Markov’s Inequality

= µn → 0.

For supercritical case, note E[Zn] → ∞ does not imply P(Zn = 0) 6→ 1.

Recall G is the PGF of X and Gn the PGF of Zn, qn = P(Zn = 0) = Gn(0) and that q is
the extinction probability.

Claim 4.4
G(q) = q.

Proof 1. qn+1 = G(qn) by Theorem 4.2, qn → q and G is continuous as it’s a power
series so G(qn) → G(q) so q = G(q) as n → ∞.

Proof 2 - LTP (revision of random sums). Conditional on Z1 = k, we get k independ-
ent branching processes.

...
...

...
...

...

. . .

The total population is finite ⇐⇒ all subtreesa of 1st generation are finite.

q = P(finite)
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=
∑
k≥0

P(all finite | Z1 = k)P(Z1 = k)

=
∑
k≥0

[P(finite)]kP(Z1 = k)

=
∑

qkP(Z1 = k)

= G(q).

Facts about G

• G(0) = P(X = 0) ≥ 0

• G(1) = 1

• G′(1) = E[X] = µ.

• G is smooth, all derivatives ≥ 0 on [0, 1) as all coefficients of the power series
are non-negative.

1

1

G(0)

q

G(0)

The 1st graph has gradient < 1 so only one solution at q = 1.
In the 2nd graph, the gradient is > 1 so there is only one solution on [0, 1) by IVT on
G(z) − z.
aEach subtree has the same distribution as the original tree.

Theorem 4.5
q, the extinction probability, is the minimal solution to z = G(z) in [0, 1].a

aAssuming P(X = 1) 6= 1.

Corollary 4.2
q = 1 ⇐⇒ µ ≤ 1
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Proof. Let t be the minimal solution to t = G(t). Reminder: G is increasing.

t ≥ 0
=⇒ G(t) ≥ G(0)

=⇒ G(G(t)) ≥ G(G(0))
=⇒ G(. . . G(t) . . . ) ≥ G(. . . G(0) . . . )

t ≥ qn

t ≥ q as n → ∞.

q is a solution by Claim 4.4 and is bounded above by the minimal solution so t =
q.

59



§5 Continuous Probability

We will focus on the case where Im(X) is an interval in R.
Why?

• Natural for measuring physical quantities, proportions …

• “Limits” of discrete RV.

• Calculus tools for nice calculations.

Definition 5.1 (Random Variable - Redefintion)
A random variable X on (Ω, F ,P) is a function X : Ω → R s.t. {X ≤ x} ∈ F .

This is consistent with the previous definition when Ω is countable (or Im(X) is count-
able).

Drawback: We cannot take F = P(R).

Definition 5.2 (Cumulative Distribution Function)
The cdf of RV X is

FX : R → [0, 1]
FX(x) = P(X ≤ x).

Example 5.1 (A 6-sided dice)
insertpicture

§5.1 Properties of CDF

Claim 5.1
FX increasing i.e. x ≤ y =⇒ FX(x) ≤ Fy(y).

Proof. FX(x) = P(X ≤ x) ≤ P(X ≤ y) = FX(y).

Claim 5.2
P(X > x) = 1 − FX(x)
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Claim 5.3
P(a < X ≤ b) = FX(b) − FX(a)

Proof (Not Lectured).

P(a < X ≤ b) = P ({a < X} ∩ {X ≤ b})
= P(X ≤ b) − P ({X ≤ b} ∩ {X ≤ a})
= P(X ≤ b) − P(X ≤ a)

Claim 5.4
FX is right-continuous and the left limit exists, i.e. limy↓x FX(y) = FX(x) and
limy↑x FX(y) = FX(x−) = P(X < x).

Proof - Right Continuous. STP FX

(
x + 1

n

)
→ FX(x) as n → ∞.

Let An = {x < X ≤ x + 1
n}. Then (An) are decreasing events and ⋂n An = ∅.

So P(An) = FX

(
x + 1

n

)
− FX(x) and P(An) → P(∅) = 0.

Proof - Left Limits. FX

(
x − 1

n

)
is an increasing sequence bounded above by FX(x).

Consider Bn =
{

X ≤ x − 1
n

}
then (Bn) increasing and ⋃n Bn = {X < x}. So

FX

(
x − 1

n

)
= P(Bn) → P(X < x).

Claim 5.5
limx→∞ FX = 1, limx→−∞ FX = 0.

Proof. Let An = X ≤ n, so (An) are increasing events and ∪nAn = Ω. So FX(n) =
P(X ≤ n) → P(Ω) = 1 by Continuity.

Similar for limx→−∞ FX = 0.

§5.2 Continuous RVs

Definition 5.3 (Continuous RV)
A RV is continuous if F is continuous.
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Claim 5.6
If X is a continuous RV then P(X = x) = 0 ∀ x.

Proof.

FX(x) = FX(x−)
⇐⇒ P(X ≤ x) = P(X < x) ∀ x

⇐⇒ P(X = x) = 0 ∀ x.

Note. In this course we assume that F is also differentiable so that FX(x) = P(X ≤ x) =∫ x
−∞ fX(u) du.

Definition 5.4 (Probability Density Function)
The pdf of RV X is fX : R → R with properties

fX(x) ≥ 0 ∀ x∫ ∞

−∞
fX(x) dx = 1.

Intuitive meaning

P(x < X ≤ x + δx) =
∫ x+δx

x
fX(u) du ≈ δx · fX(x)

P(a < X ≤ b) =
∫ b

a
fX(x) dx

= P(a ≤ X < b) since P(X = a) = P(X = b) = 0.

x

fX

a b

∫ b

a
fX(x) dx = P(a < X ≤ b)
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So for S ⊂ R, P(X ∈ S) =
∫

S fX(u) du. (S “nice” e.g. interval or countable union of
intervals)

Key takeaways:

• The CDF is a collection of probabilities

• The PDF is not a probability. We use them by integrating to get a probability.

Example 5.2 (Uniform Distribution)
Let X ∼ U[a, b] where a, b ∈ R and a < b.

fX(x) =
{ 1

b−a x ∈ [a, b]
0 otherwise

FX(x) =
∫ x

a
fX(u) du

= x − a

b − a
for a ≤ x ≤ b.

Question
In what sense is this a “limit of discrete uniform RVs”?

Example 5.3 (Exponential Distribution)
Let X ∼ Exp(λ) where λ > 0.

fX(x) =
{

λe−λx x > 0
0 otherwise

It is easy to check that fX(x) is a pdf.

FX(x) = P(X ≤ x)

=
∫ x

0
λe−λu du

= 1 − e−λx.

The exponential distribution is the “limit of (rescaled) geometric distribution”. It is a
good way to model arrival times, “how long to wait before something happens” - link
to Poisson usage which will be explored in Part II.

Claim 5.7 (Memoryless property)
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(Conditional P works as before). Let X ∼ Exp(λ) and s, t > 0.

P(X ≥ s + t | X ≥ s) = P(X ≥ t).

Proof.

P(X ≥ s + t | X ≥ s) = P(X ≥ s + t)
P(X ≥ s)

= e−λ(s+t)

e−λs

= e−λt

= P(X ≥ t).

Note. The only continuous memoryless distribution (with a density) is the exponential
distribution.

§5.3 Expectation of Continuous RVs

Definition 5.5 (Expectation)
The expectation of X is

∫∞
−∞ xfX(x) dx and E[g(X)] =

∫∞
−∞ g(x)fX(x) dx.a

aTechnical comment: assumes at most one of
∫ 0

−∞ |x|fX(x) dx and
∫∞

0 xfX(x) dx is infinite.

Claim 5.8 (Linearity of Expectation)
E[λX + µY ] = λE[X] + µE[Y ].

Claim 5.9
If X ≥ 0 then E[X] =

∫∞
0 P(X ≥ x) dx.

Proof.

E[X] =
∫ ∞

0
xfX(x) dx

=
∫ ∞

x=0

(∫ x

u=0
1 du

)
fX(x) dx

=
∫ ∞

u=0
du

∫ ∞

x=u
fX(x) dxa
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=
∫ ∞

u=0
duP(X ≥ u)

aConsider the region of (u, x) space the second line integrates over and see this is the same as the
third line.

§5.4 Variance of Continuous RVs

Definition 5.6 (Variance)
Var(X) = E

[
(X − E[X])2] = E

[
X2]− (E[X])2.

Claim 5.10
Var(aX + b) = a2 Var(X).

Example 5.4 (Uniform Distribution)
Let X ∼ U[a, b].

E[X] =
∫ b

a
x

1
b − a

dx

= a + b

2

E[X2] =
∫ b

a
x2 1

b − a
dx

= 1
3

(
a2 + ab + b2

)
Var(X) = 1

3

(
a2 + ab + b2

)
−
(

a + b

2

)2

= (b − a)2

12
.

Example 5.5 (Exponential Distribution)
Let X ∼ Exp(λ).

E[X] =
∫ ∞

0
xλe−λx dx

=
[
−xe−λx

]∞
0

+
∫ ∞

0
e−λx dx
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= 1
λ

.

E[X2] =
∫ ∞

0
x2λe−λx dx

=
[
−x2e−λx

]∞
0

+ 2
∫ ∞

0
xe−λx dx

= 0 + 2
λ2 .

Var(X) = 2
λ2 − 1

λ2

= 1
λ2 .

§5.5 Transformations of Continuous RVs

Goal:

• Let U ∼ Unif[a, b] and Ũ ∼ Unif[0, 1]. We want to be able to write U = (b−a)Ũ +a
and carry all calculations over.

• View g(X) as a continuous RV with its own density.

Theorem 5.1
• Let X be a continuous RV with density f .

• Let g : R → R be continuous s.t.

– g is either strictly increasing or strictly decreasing.

– g−1 is differentiable.

Then g(X) is a continuous RV with density

f̂(x) = f(g−1(x)) ·
∣∣∣∣ d

dx
g−1(x)

∣∣∣∣ (2)

Remark 6.

• Density is? Something to integrate over to get a probability.

• Equation (2) is integration by substitution.

• The following proof uses CDFs (which are probabilities).

Proof. Assume g is strictly increasing, g strictly decreasing case is similar.

Fg(X)(x) = P(g(X) ≤ x)
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= P(X ≤ g−1(x))
= FX(g−1(x))

F ′
g(X)(x) = F ′

X(g−1(x)) d

dx
g−1(x)

= f(g−1(x)) d

dx
g−1(x).

Sanity check: We’ve got two expressions forE[g(X)],
∫∞

−∞ xf̂(x) dx and
∫∞

−∞ g(x)f(x) dx.
(Assume Im(X) = Im(g(X)) = (−∞, ∞)).

∫ ∞

−∞
xf̂(x) dx =

∫ ∞

−∞
xf(g−1(x)) d

dx
g−1(x) dx.

Substitute: g−1(x) = u so du = dx d
dxg−1(x).

=
∫ ∞

−∞
g(u)f(u) du.

Example 5.6 (Exponential Distribution)
• Let X ∼ Exp(λ) and Y = cX .

P(Y ≤ x) = P
(

X ≤ x

c

)
= 1 − e−λ x

c

= 1 − e− λ
c

x − CDF of Exp
(

λ

c

)
.

• f̂(x) = 1
c

f

(
x

c

)
= 1

c
λe−λx/c = λ

c
e− λ

c
x − PDF of Exp

(
λ

c

)
.

Definition 5.7 (The Normal Distribution)
The range is (−∞, ∞). It has two parameters: µ ∈ (−∞, ∞) and σ2 ∈ (0, ∞).

f(x) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)
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Definition 5.8 (Standard Normal)
The standard normal distribution is Z ∼ N (0, 1)a where

fZ(x) = 1√
2π

e− x2
2 .

aSometimes may be referred to as φ(x).

Notation. Φ denotes the CDF of Z.

Remark 7.

• 1√
2π

is a “normalising constant” to ensure
∫

f(x) dx = 1.

• e−x2/2 has a very rapid decay as x → ±∞, this helps ensure that the expected
value of g(N ) is defined as

∫∞
0 g() is finite.

• N (µ, σ2) used for modelling non-negative quantities, this is fine because if µ is
large P(N (µ, σ2) < 0) is very small.

Proof. Let us check that fZ is actually a density

I =
∫ ∞

−∞
e−x2/2 dx

Clever idea is to use I2 instead

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−u2/2e−v2/2 du dv

=
∫ ∫

e− u2+v2
2 du dv

Polar coordinates: u = r cos θ and v = r sin θ.

=
∫ ∞

r=0

∫ 2π

θ=0
re−r2/2 dθ dr

= 2π

∫ ∞

r=0
re−r2/2 dr

= 2π.

Claim 5.11
E[Z] = 0.
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Proof. Clear by symmetry, density is symmetric about origin, and its expectation is
well-defined as tail decays rapidly.

Claim 5.12
Var(Z) = 1.

Proof. STP: E[Z2] = 1.

E[Z2] = 1√
2π

∫ ∞

−∞
x2e−x2/2 dx

= 1√
2π

∫ ∞

−∞
x · xe−x2/2 dx

=
[
−x · e−x2/2

√
2π

]∞

−∞
=0

+ 1√
2π

∫ ∞

−∞
e−x2/2 dx

= 1.

§5.5.1 Studing N (µ, σ2) via linear transformation

Claim 5.13 (Facts about X ∼ N (µ, σ2))
1. X has the same distribution as µ + σZ where Z ∼ N (0, 1).

2. X has CDF FX(x) = Φ
(

x−µ
σ

)
.

3. E[X] = µ, Var(X) = σ2.

Proof.

1. Let g(x) = µ + σz so g−1(x) = x−µ
σ .

Then g(Z) has density

fg(Z)(x) = fZ(g−1(x)) ·
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ by Theorem 5.1

= 1
σ

fZ

(
x − µ

σ

)
= 1

σ
√

2π
e− (x−µ)2

2σ2 .
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2. Fg(Z) = P(g(Z) ≤ x)

= P
(

Z ≤ x − µ

σ

)
= Φ

(
x − µ

σ

)
.

3. Use part (i) to get

E[X] = E[µ + σZ]
= µ + σE[Z]
= µ

Var(µ + σZ) = σ2 Var(Z)
= σ2.

Remark 8. To calculate the cdf we only need to know Φ so you would only need to print
out a table of values for Φ.

Example 5.7
Let X ∼ N (µ, σ2).

P(a ≤ X ≤ B) = P
(

a − µ

σ
≤ X − µ

σ
≤ b − µ

σ

)
= P

(
a − µ

σ
≤ Z ≤ b − µ

σ

)
= Φ

(
b − µ

σ

)
− Φ

(
a − µ

σ

)
.

Special Case: a = µ − kσ and b = µ + kσ where k ∈ N.
Then P(a ≤ X ≤ b) = Φ(k) − Φ(−k). “within k standard deviations of the mean”.
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µ + 2σµ − 2σ µ

Definition 5.9 (Median)
Suppose that X is a continuous RV, the median of X is the number m s.t.

P(X ≤ m) = P(X ≥ m) = 1
2

In other words ∫ m

−∞
f(x) dx =

∫ ∞

0
f(x) dx = 1

2

Remark 9.

• ForX ∼ N (µ, σ2) and other distributions symmetric about theirmean, themedian
m = E[X].

• Sometimes |X − m| better than |X − µ| for interpretation.

§5.6 More than one continuous RVs

Allow RVs to take values in Rn.
E.g. X = (X1, . . . , Xn) ∈ Rn a RV.

Definition 5.10 (Multivarite Density Function)
We say that X has multivariate density f : R → [0, ∞) if

P(X1 ≤ x1, . . . , Xn ≤ xn) =
∫ x1

−∞
· · ·
∫ xn

−∞

Integrate over (−∞,x1]×···×(−∞,xn]

f(u1, . . . , un)
∏

dui

i.e. du1... dun
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=
∫ x1

−∞
· · ·
∫ xn

−∞
f(u1, . . . , un)

∏
dui.

f is sometimes also called (especially for n = 2) a joint density function.

Consequence: This generalises: P ((X1, . . . , Xn) ∈ A) =
∫

A f(u) du for all “measurable”
A ∈ Rn.

Definition 5.11 (Independence)
We say that X1, . . . , Xn are independent if ∀x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

Goal: convert to statement about densities

Definition 5.12 (Marginal Density)
Let X = (X1, . . . , Xn) have density f . The marginal density fXi of Xi is

fXi(xi) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x1, . . . , xn)

∏
j 6=i

dxj

“The density of Xi viewed as a RV by itself. We fix xi and let everything else vary.”

Theorem 5.2
Let X = (X1, . . . , Xn) has density f .

1. If X1, . . . , Xn are independent with marginals fX1 , . . . , fXn . Then
f(x1, . . . , xn) = fX1(x1) . . . fXn(xn)

2. Suppose that f factorises as f(x1, . . . , xn) = g1(x1) . . . gn(xn) for some non-
negative functions (gi). Then X1, . . . , Xn are independent andmarginal fXi ∝
gi.

Proof.

1. P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

=
[∫ x1

−∞
fX1(u1) du1

]
. . .

[∫ xn

−∞
fXn(un) dun

]
=
∫ x1

−∞
· · ·
∫ xn

−∞

∏
fXi(ui)

matches definition of f

∏
dui
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2. Idea:

• replace gi(x) with hi(x) = gi(x)∫
gi(u) du

so hi is a density.

• compute integrals for P(X1 ≤ x1, . . . , Xn ≤ xn) and P(X1 ≤
x1) . . .P(Xn ≤ xn) and show equality.

§5.7 Transformation of Multiple RVs

Example 5.8
Let X and Y be independent RVs with densities fX and fY respectively.
Goal: density of Z = X + Y .

P(X + Y ≤ z) =
∫ ∫

{x+y≤z}

fX,Y (x, y) dx dy

=
∫ ∞

x=−∞

∫ z−x

y=−∞
fX(x)fY (y) dx dy

Substitute y′ = y + x

=
∫ ∞

x=−∞

(∫ z

y′=−∞
fX(x)fY (y′ − x) dy′

)
dx

y′ 7→ y

=
∫ z

y=−∞
dy

(∫ ∞

x=−∞
fX(x)fY (y − x) dx

)
So the density of Z is:

fZ(z) =
∫ ∞

−∞
fY (z − x)fX(x) dx

We call this function the convolution of fX and fY .

For X, Y discrete, non-negative and independent we would have

P(X + Y = k) =
k∑

l=0
P(X = ℓ)P(Y = k − ℓ)

Definition 5.13 (Gamma Distribution)
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The gamma distribution has two parameters λ > 0 and n ∈ N. Its range is [0, ∞).
We say X ∼ Γ(n, λ) and has density

fX(x) = e−λxxn−1 λn

(n − 1)!
n = 1 7→ Exp(λ)
n = 2 7→ λ2xe−λx

Example 5.9 (Exponential Distribution)
Let X, Y ∼ Exp(λ) be IID and Z = X + Y .

fZ(z) =
∫ ∞

−∞
λe−λ(z−x)λe−λx dx

=
∫ z

0
λ2e−λz dx

= λ2ze−λz.

So X + Y ∼ Γ(2, λ) and in fact the sum of n IID Exp(λ) has distribution Γ(n, λ).

Example 5.10 (Normal Distribution)
Let X1 ∼ N (µ1, σ2

1), X2 ∼ N (µ2, σ2
2) be independent.

Then X1+X2 ∼ N (µ1, +µ2, σ2
1 +σ2

2) (We already knowwhat themean and variance
of X1 + X2 is, the interesting part is that it is normal).
We can prove this using convolution but we will prove it using generating functions
soon, Example 5.13.

Theorem 5.3
Let X = (X1, . . . , Xn) be a RV on D ∈ Rn, g : Rn → Rn well-behaved and U =
g(X) = (U1, . . . , Un). Assume the joint density fX(x) is continuous.
Then the joint density

fU (u) = fX

(
g−1(u)

)
|J(u)|
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where J , the Jacobean, is

J = det


(

∂[g−1(u)]i
∂uj

)n

i,j=1

n×n matrix



“Proof”. Definition of multivariate integration by substitution.

Top tip: |Jacobean of g−1| = 1
|Jacobean of g| .

Example 5.11 (Radial symmetry)
Let X, Y ∼ N (0, 1) be IID.
Let (X, Y ) = (R cos Θ, R sin Θ)

g−1

.

Range: R > 0, Θ ∈ [0, 2π).

(X, Y )

θ

fX,Y (x, y) = 1√
2π

e− x2
2

1√
2π

e− y2
2

= 1
2π

e− x2+y2
2

J =
∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣
= r.

=⇒ fR,Θ(r, θ) = 1
2π

e− r2
2 × r

fΘ(θ) = 1
2π
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fR(r) = e− r2
2 r

Thus Θ, R are independent and Θ is uniform on [0, 2π).

Warning: Change of range.
Eg: X, Y ≥ 0. Z = X + Y .

fX,Z(x, z) =?(x, z)1z≥x

so X, Z are not independent even if ? splits as a product.
Y

X

Z

X 5

The support needs to be a rectangle as then the indicator function will split as a
product.

§5.8 Moment Generating Function

Definition 5.14 (Moment Generating Function)
Let X have density f . The MGF of X is

mX(θ) = E[eθX ]

=
∫ ∞

−∞
eθxf(x) dx

whenever this is finite.

Note. mX(0) = 1.

Theorem 5.4

5This graphic doesn’t seem to render properly in edge.
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The MGF uniquely determines distribution of a RV whenever it exists ∀ θ ∈ (−ε, ε)
for some ε > 0.

Definition 5.15 (Moment)
The nth moment of X is E[Xn].

Theorem 5.5
Suppose m(θ) exists ∀ θ ∈ (−ε, ε). Then m(n)(0) = dn

dθn m(θ)
∣∣∣
m=0

= E[Xn].

Proof comment: Use ∂neθx

∂θn = xneθx.

Claim 5.14
Let X1, . . . , Xn be independent and X = X1 + · · · + Xn. Then

mX(θ) = E[eθ(X1+···+Xn)]
= E[eθX1 ] . . .E[eθXn ] by independence
=
∏

mXi(θ).

Example 5.12 (Gamma Distribution)
Let X ∼ Γ(n, λ).

fX(x) = e−λx λnxn−1

(n − 1)!

m(θ) =
∫ ∞

0
eθxe−λx λnxn−1

(n − 1)!
dx

Goal: Reduce to integral of pdf over range!

=
∫ ∞

0
e−(λ−θ)xxn−1 × λn

(n − 1)!
dx

=
(

λ

λ − θ

)n ∫ ∞

0
e−(λ−θ)xn−1 (λ − θ)n

(n − 1)!
pdf of Γ(n,λ−θ)a

dx

=


(

λ
λ−θ

)n
θ < λ

∞ θ ≥ λ.
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So Exp(λ) has MGF λ
λ−θ . And we’ve proved that the sum of n IID Exp(λ) has distri-

bution Γ(n, λ).
aprovided θ < λ.

Example 5.13 (Normal Distribution)
Let X ∼ N (µ, σ2).

fX(x) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)

mX(θ) = exp
(

θµ + θ2σ2

2

)

The proof is left as an exercise, try relating integral to integral of pdf of some normal
distribution.
Let X1 ∼ N (µ1, σ2

1), X2 ∼ N (µ2, σ2
2) be independent. Then

mX1+X2(θ) = exp
(

θµ1 + θ2σ2
1

2

)
exp

(
θµ2 + θ2σ2

2
2

)

= exp
(

θ(µ1 + µ2) + θ2

2
(σ2

1 + σ2
2)
)

MGF of N (µ1+µ2,σ2
1+σ2

2)

§5.9 Convergence of RVs

Definition 5.16 (Convergence in Distribution)
Let (Xn)n≥1 and X be RVs. Xn converges to X in distribution, Xn

d→ X , if FXn(x) →
FX(x) for all x ∈ R which are continuity points of FX .

Example 5.14
Let Xn = 1

n Unif (1, . . . , n) and X ∼ Unif[0, 1].
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FX continuous, FXn → FX(x) holds ∀ x ∈ [0, 1] by picture so Xn
d→ X .

Example 5.15

Xn =
{

0 P = 1
2

1 + 1
n P = 1

2

FXn(x) =


1
2 x ∈ (0, 1)
1
2 x = 1
1 x > 1 when n is large

Let X ∼ Bern
(1

2

)
FX(1) = 1.

But FX has a discontinuity at x = 1 so Xn
d→ X .

(I.e. deterministic convergence of a sequence of real numbers is an example of con-
vergence in distribution)

Claim 5.15
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If X is a constant c, then convergence in distribution is equivalent to: ∀ ε > 0 :
P(|Xn − c| > ε) → 0 as n → ∞. “convergence in probability to constant”.

Claim 5.16
If X is a continuous RV with Xn

d→ X then P(a ≤ Xn ≤ b) → P(a ≤ X ≤ b) for all
a, b ∈ [−∞, ∞].

Warning: Does not say that densities converge, e.g. in Example 5.14, Xn does not have
a density.

§5.10 Laws of Large Numbers

Sn

n
“ → ”µ

Theorem 5.6 (Weak LLN)
Let (Xn)n≥1 be IID with µ = E[X1] finite. Set Sn = X1 + · · · + Xn ∀ n ≥ 0. Then

∀ ε > 0 : P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε

)
→ 0 as n → ∞

Proof. (Assume Var(X1) = σ2 < ∞)

P
(∣∣∣∣Sn

n
− µa

∣∣∣∣ > ε

)
= P (|Sn − nµ| > εn)

≤ Var(Sn)
ε2n2 by Chebyshev’s Inequality

= nσ2

ε2n2 → 0 as n → ∞.

ε > 0 is fixed we are not taking limit as ε → 0.
aAlso E

[
Sn
n

]

§5.11 Central Limit Theorem

Theorem 5.7 (Central Limit Theorem)
Let (Xn)n≥1 be IIDwith µ = E[X1] finite and σ2 < ∞. Set Sn = X1+· · ·+Xn ∀ n ≥
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0. Then
Sn − nµ√

nσ2
d→ N (0, 1) as n → ∞.

Discussion: Three stage summary

1. Distribution of Sn concentrated on nµ - we already know this from WLLN.

2. Fluctuations around nµ have order √
n - new and important

3. Shape is normal - detail.

We use CLT by

1. Sn
d≈ N (nµ, nσ2)

2. P(a ≤ Sn ≤ b) = P
(

a − nµ√
nσ2

≤ Sn − nµ√
nσ2

≤ b − nµ√
nσ2

)
.

= P
(

a − nµ√
nσ2

≤ Z ≤ b − nµ√
nσ2

)
.

Theorem 5.8 (Continuity Theorem for MGFs)
Let (Xn) and X have MGFs mXn and mX . If

• mX(θ) < ∞ for θ ∈ (−ε, ε).

• mXn(θ) → mX(θ) ∀ θ s.t. mX(θ) < ∞.

Then Xn
d→ X .

Proof. Part II Probability and Measure.

Idea: Expand mX(θ) as a Taylor series around 0.

mX(θ) = 1 + m′
X(0)θ + m′′

X(0)
2!

θ2 + . . .

= 1 + θE[X] + 1
2

θ2E[X2] + o(θ2)

Proof - WLLN via MGFs.

Comment: We know MGF of Sn, we want to study the MGF of Sn/n.

mSn/n(θ) = E
[
exp

(
θ

Sn

n

)]
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= E
[
exp

(
θ

n
Sn

)]
Key step.

= mSn(θ/n)
= mX1(θ/n) . . . mXn(θ/n)

=
(

1 + µ
θ

n
+ o

( 1
n

))n

→ eµθ

eµθ is the MGF of the RV X = µ with P = 1, so Sn
n

d→ µ by the continuity theorem.

Proof - CLT via MGFs.

Assume WLOG µ = 0 and σ2 = 1. (so E[X2
i ] = 1). In general X 7→ X−µ√

σ2

STP: Sn/
√

n
d→ N (0, 1).

mXi(θ) = 1 + θ2

2
+ o(θ2)

mSn/
√

n(θ) = E
[
exp

(
θ

Sn√
n

)]
= E

[
exp

(
θ√
n

Sn

)]
= mSn(θ/

√
n)

= mX1(θ/
√

n) . . . mXn(θ/
√

n)

=
(

1 + θ2

2n
+ o

( 1
n

))n

→ eθ2/2

eθ2/2 is the MGF of the N (0, 1).

Theorem 5.9 (Strong LLN)
Let (Xn)n≥1 be IIDwith µ = E[X1] finite and σ2 < ∞. Set Sn = X1+· · ·+Xn ∀ n ≥
0. Then

P
(

Sn

n
→ µ as n → ∞

)
= 1.

“almost sure convergence” or “convergence with probability 1”.
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§5.12 Inequalities for E[f(X)]

Motivation: For f(x) = x2 we know E[f(X)] ≥ f(E[X]) as Var(X) ≥ 0.

Question
What about general f?

Definition 5.17 (Convex Function)
A function f : R → R is convex if ∀ x, y ∈ R and t ∈ [0, 1]

f (tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

x y

LHS

RHS

Aside: The region above f is convex in R2

Definition 5.18 (Stricly Convex Function)
A function f : R → R is stricly convex if ∀ x, y ∈ R and t ∈ (0, 1)

f (tx + (1 − t)y) < tf(x) + (1 − t)f(y).

Lemma 5.1 (Existence Of Subdifferential)
If f : R → R convex then ∀ y ∃ line l(x) = mx + c s.t.

• l(x) ≤ f(x) ∀ x

• l(y) = f(y)

Warning: not yet claiming l is a tangent.
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Proof. Convexity =⇒ ∀ x < y < z insertpicture

f(y) − f(x)
y − x

≤ f(z) − f(y)
z − y

Let M− = sup
x<y

f(y) − f(x)
y − x

M+ = inf
z>y

f(z) − f(y)
z − y

M− ≤ M+.

Any value m ∈ [M−, M+] works as the gradient of l.

Definition 5.19 (Concave Function)
f is concave iff −f is convex.

Claim 5.17
If f is twice differentiable:

f convex ⇐⇒ f ′′(x) ≥ 0 ∀ x.

Example 5.16

f(x) = 1
x

is convex on (0, ∞)

is concave on (−∞, 0).

Theorem 5.10 (Jensen’s Inequality)
Let X be a RV and f a convex function:

E[f(X)] ≥ f(E[X]).

(reverse the inequality if f concave).

Proof. Set y = E[X] as in Existence Of Subdifferential, so ∃ l(x) = mx + c s.t. l(y) =
f(y) = f(E[X]) and f ≥ l.

E[f(X)] ≥ E[l(X)]
= E[mX + c]
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= mE[X] + c

= my + c

= l(y)
= f(E[X]).

Claim 5.18
If f is strictly convex then E[f(X)] = f(E[X]) iff X = E[X] with P = 1, i.e. constant
RV.

Informal comment: Jensen’s inequality is better than most other inequalities as many
can be derived from Jensen’s.

§5.13 Application to sequences

Definition 5.20 (AM - GM inequality)
Let x1, . . . , xn ∈ (0, ∞).

x1 + · · · + xn

n
≥
(

n∏
i=1

xi

) 1
n

Proof of n = 2.

0 ≤ (x − y)2

= x2 − 2xy + y2

= x2 + 2xy + y2 − 4xy

= (x + y)2 − 4xy

Proof. Let X be a RV taking values x1, . . . , xn each with probability 1
n . Let f(x) =

− log x, which is convex by second derivative.

E[f(X)] ≥ f(E[X]) by Jensen’s Inequality

− log x1 + . . . log xn

n
≥ − log

(
x1 + · · · + xn

n

)
log

(
(x1 . . . xn)

1
n

)
≤ log x1 + . . . xn

n
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log x and ex are increasing.
(∏

xi

) 1
n ≤ x1 + · · · + xn

n
.

§5.14 Sampling a Continuous RV

Theorem 5.11
Let X be a continuous RVwith CDF F . Then if U ∼ U[0, 1], we have Y = F −1(U) ∼
Xa.
aRemember that U is a RV and F is just a increasing function

Proof. Goal: Find CDF of Y .

P(Y ≤ x) = P(F −1(U) ≤ x)

rearrange within P()

= P(U ≤ F (x))
= F (x)

CDF of Y = CDF of X , so Y ∼ X .

§5.15 Rejection Sampling

Sampling uniformly on [0, 1]d is easy, we simply take (U (1), . . . , U (d)) IID where U i ∼
U[0, 1].

Question
How do we sample uniformly on A? insertpicture

Goal:

f(x) =


1

area(A) x ∈ A

0 x /∈ A.

= 1A

area(A)
.

In higher dimensions, use volume(A)−1.
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Let U1, U2, . . . be IID uniform on [0, 1]d and let N = min{n : Un ∈ A}.

Claim 5.19
UN is uniform on A. (i.e. has density f)

Proof. Note P(N < ∞) = 1 if area(A) > 0.
STP: P(UN ∈ B) =

∫
B f(x) dx = area(B)

area(A) ∀ B ⊂ A with a well-defined area.

P(UN ∈ B) =
∑
n≥1

P(UN ∈ B, N = n) by Law of Total Probability

=
∑
n≥1

P(U1 /∈ A, . . . , Un−1 /∈ A, Un ∈ B)

=
∑
n≥1

P(U1 /∈ A)n−1P(Un ∈ B) as Ui are independent

=
∑
n≥1

(1 − area(A))n−1 area(B)

= area(B)
1 − (1 − area(A))

= area(B)
area(A)

.

Claim 5.20
Let X be a continuous RV on [0, 1] with bounded density fX .
Let A = {(x, y) : x ∈ [0, 1], y ≤ fX(x)}, i.e. the green region.
Let U = (U (1), U (2)) be uniform on A.
Then U (1) ∼ X .

insertpicture

Proof.

P(U1 ≤ u) = P(U ∈ blue region)
= area({(x, y) : x ≤ u, y ≤ fX(x)})

=
∫ u

0
fX(x) dx

= FX(u).

So the CDF of U (1) is FX .
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Claim 5.21
Let X be a continuous RV on [−k, k]d with bounded density fX .
Let A = {(x, y) : x ∈ [−k, k]d, y ≤ fX(x)} ∈ Rd+1.
Let U = (U , U+) be uniform on A.
Then U ∼ X .

§5.16 Multivariate Normal Distribution

Definition 5.21 (Gaussian RV)
A RV X is Gaussian if X ∼ N (µ, σ2).a
aX is a one dimensional normal.

Recall if X, Y are independent Gaussians then bX + cY is Gaussian, Example 5.13.

Question
Does there ∃ joint RVs (X, Y ) s.t. X, Y both Gaussian but X + Y is not?

Answer
Yes but the answer is annoying and doesn’t have any real physical interpretation.

Question
Can we have dependent X, Y s.t. bX + cY still holds?

Answer
Yes.

Definition 5.22 (Gaussian Random Vector)
A random vector (X, Y ) is Gaussian if bX + cY are a Gaussian RV ∀ b, c ∈ R.

§5.16.1 Linear Algebra Rewrite

Definition 5.23 (Gaussian Random Vector)
Random vector X = (X1, . . . , Xn) ∈ Rn is Gaussian if uT X is a Gaussian RV ∀ u ∈
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Rn.

Let µ = E[X] ∈ Rn.

Definition 5.24 (Covariance Matrix)
The covariance matrix V is

V = (Cov(Xi, Xj))n
i,j=1 ∈ Rn×n

For n = 2 : V =
(

Var(X) Cov(X, Y )
Cov(Y, X) Var(Y )

)
.

Claim 5.22
The covariance matrix is symmetric.

Claim 5.23
If X is a Gaussian random vector then uT X ∼ N (uT µ, uT V u).

Definition 5.25 (Moment Generating Function in Rn)
Let X ∈ Rn be a RV. The MGF of X is

mX(u) = E
[
euT X

]
whenever this is finite.

Theorem 5.12
TheMGF uniquely determines distribution of a RVwhenever it exists ∀ u ∈ (−ε, ε)n

for some ε > 0.

Claim 5.24
If X Gaussian mX(u) = muT X(1) = exp

(
uT µ + 1

2uT V u
)
.

Logical overview: X ∈ Rn Gaussian.

• distribution defined by MGF

• MGF defined by µ and V
=⇒ distribution of X defined by µ and V .
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Remark 10. Density is

fX(x) = 1
(2π)

n
2

1√
det(V )

exp
(

−1
2

(x − µ)T V (x − µ)
)

Claim 5.25
Return to n = 2: For a Gaussian vector (X1, X2) it is independent ⇐⇒
Cov(X1, X2) = 0. ⇐= is false in general.

Why useful? Imagine X1, X2 describe real-world parameters, e.g. height vs 1 km rowing
time.

• Independence would be an interesting conclusion

• Cov can be sampled.

Proof. X = (X1, X2) is independent iff mX ((u1, u2)) splits as a product
m1(u1)m2(u2).

exp
(
uT µ

)
= exp(u1µ1) exp(u2µ2)

exp
(1

2
uT V u

)
= exp

(1
2

u2
1σ2

1

)
exp

(1
2

u2
2σ2

2

)
exp(u1u2 Cov(X1, X2))

Therefore splits iff Cov = 0.

Motivation: Cov(100X1, X2) = 100 Cov(X1, X2), so “large covariance” doesn’t imply
“very dependent”.

Definition 5.26 (Correlation)
The correlation of X, Y is

Corr(X, Y ) = Cov(X, Y )√
Var(X) Var(Y )

∈ [−1, 1].

Proposition 5.1
If (X, Y ) Gaussian, then Y = aX + Z where Z is Gaussian and (X, Z) independent.

Proof. Define Z = Y − aX for a ∈ R.

Claim 5.26
(X, Z) is Gaussian
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Proof.

u1X + u2Z = u1X + u2(Y − aX)
= (u1 − au2)X + u2Y.

Goal: find a s.t. Cov(X, Z) = 0 Cov(X, Z) = Cov(X, Y − aX) = Cov(X, Y ) −
a Var(X) so take a = Cov(X,Y )

Var(X) . Then Cov(X, Z) = 0 =⇒ X, Z independent.

§5.17 Bertrand’s Paradox

Example 5.17

A

B

r

Draw a chord at random.
What is the probability it has length ≤ r?

1st interpretation: Let X ∼ U [0, r]

B

A

r
C = 2

√
r2 − X2

X √
r2 − X2

Let C = |AB|. What is P(C ≤ r)?

C = 2
√

r2 − X2
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P(C ≤ r) = P(2
√

r2 − X2 ≤ r)
= P(4(r2 − X2) ≤ r2)
= P(4X2 ≥ 3r2)
= P(X ≥

√
33/2)

= 1 −
√

3
2

≈ 0.134

Example 5.18 (cont.)
2nd interpretation: Let θ ∼ [0, 2π]
Let C = |AB|
If θ ∈ [0, π]:

B

A

θ
θ
2

C = 2r sin θ

2
If θ ∈ [π, 2π]:

B

A

θ

2π − θ

C = 2r sin 2π − θ

2
= 2r sin θ

2
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P(C ≤ r) = P(2r sin θ

2
≤ r)

= P(sin θ

2
≤ 1

2
)

= P(θ ≤ π

3
) + P(θ ≥ π

3
)

= 1
6

+ 1
6

= 1
3

≈ 0.333 . . .

§5.18 Buffon’s Needle

Example 5.19

L

θ

X
l sin θ

parallel lines at distance L apart

needle length l ≤ L

Throw the needle at random. What is the probability it intersects at least one line?

θ ∼ U [0, π], X ∼ U [0, L] indep.

It intersects a line iff X ≤ l sin θ.

P(intersection) = P(X ≤ l sin θ) =
∫ L

0

∫ π

0

1
πL

1(x ≤ l sin θ) dx dθ = 2l

πL

So p = 2l
πL

=⇒ π = 2l

pL

Want to use this experiment to approximate π. Throw n needles indep. and let p̂n
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be the proportion intersecting a line. Then p̂n approximates p and so

π̂n = 2l

p̂n
L approximates π

Suppose
P(|π̂n − π| ≤ 0.001) ≥ 0.99

How large should n be?

Example 5.20 (cont.)
Sn = number of needles intersecting a line

Sn ∼ Bin(n, p)

By the CLT, Sn ∼ np +
√

np(1 − p) · Z, Z ∼ N(0, 1)

p̂n = Sn

n
≈ p +

√
p(1 − p)

n
· Z

So

p̂n − p ≈

√
p(1 − p)

n
·

Define f(x) = 2l
xL . Then f(p) = π and f ′(p) = −π/p and π̂n = f(p̂n).

By Taylor expansion, π̂n = f(p̂n) ≈ f(p) + (p̂n − p)f ′(p)

=⇒ π̂n ≈ π − (p̂n − p) · π

p

=⇒ π̂n − π ≈ −π

p

√
p(1 − p)

n
= −π

√
1 − p

pn
· Z

We want

P
(

π

√
1 − p

pn
· |Z| ≤ 0.001

)
≥ 0.99

Have P(|Z| ≥ 2.58) = 0.01 and π2 · 1−p
pn decreasing in p. Minimise π2 · 1−p

pn by taking
l = L =⇒ p = 2

π and

= π2

n

(
π

2
− 1

)
Taking √

π2

n

(
π

2
− 1

)
· 2.58 = 0.001 =⇒ n = 3.75 × 107
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