Part IA — Probability

Based on lectures by Dr D. Yeo

Lent 2022

Contents

§0 Introduction

Text in blue is usually less important.

Example 0.1 Dice: outcomes 1*,* 2*, . . . ,* 6. • $\mathbb{P}(2) = \frac{1}{6}$. • P(multiple of 3) = $\frac{2}{6} = \frac{1}{3}$ $\frac{1}{3}$. • $\mathbb{P}(\text{not a multiple of 3}) = \frac{2}{3}$ • $\mathbb{P}(\text{prime}) = \frac{1}{2}$. • P(prime or multiple of 3) = $\frac{1}{3} + \frac{1}{2} = \frac{5}{6}$. $\frac{1}{2} = \frac{5}{6}$ $\frac{2}{6}$. $=\frac{4}{3}$ $\frac{4}{6} = \frac{2}{3}$ $\frac{1}{3}$. $\mathbb{P}(\text{prime or multiple of 3}) = \frac{1}{3} + \frac{1}{2}$ $\frac{1}{2} - \frac{1}{6}$ $\frac{1}{6} = \frac{2}{3}$ 3

§1 Formal Setup

Definition 1.1 (Sample Space)

The **sample space** Ω is a set of outcomes.

Definition 1.2 (*σ*-algebra)

- Let *F* a collection of subsets of Ω (called *events*).
- *F* is a *σ***-alegbra** if
	- F1. $\Omega \in \mathcal{F}$.
	- F2. $A \in \mathcal{F}$ then $A^c = \Omega \setminus A \in \mathcal{F}$.
	- F3. *∀* countable collections $(A_n)_{n \in \mathbb{N}} \in \mathcal{F}^a$, the union $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$ also.

 $\,{}^aA_1$ does not need to be countable, only the index

Remark 1. The motivation for F2 is so that $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$ $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$ $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$ (the probability of not *A* is defined as expected).

Definition 1.3 (Probability Measure)

Given *σ*-algebra *F* on Ω, function P : *F →* [0*,* 1]*^a* is a **probability measure** if

- P2. $\mathbb{P}(\Omega) = 1$.
- P3. *∀* coun[t](#page-3-2)able collections $(A_n)_{n \in \mathbb{N}}$ of *disjoint* events in \mathcal{F} :

$$
\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mathbb{P}(A_n).
$$

Then $(\Omega, \mathcal{F}, \mathbb{P})$ is a *probability space*.

 $P^aP1. P(A) \geq 0$

Example 1.1

Coming back to Example 0.1. $\Omega = \{1, 2, \ldots, 6\}$ so $\mathbb{P}(\Omega) = \mathbb{P}(1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6) = 1$ and *F* is all subsets of Ω .

Question

Why $\mathbb{P}: \mathcal{F} \to [0,1]$ and not $\mathbb{P}: \Omega \to [0,1]$?

If Ω is countable:

- In general: $\mathcal{F} =$ all subsets of Ω , i.e. $\mathcal{P}(\Omega)$ (the power set).
- $\mathbb{P}(2)$ is shorthand for $\mathbb{P}(\{2\})$.
- P is determined by $(\mathbb{P}({w})$, $\forall w \in \Omega)$ (e.g. unfair dice).

If Ω is uncountable:

- E.g. $\Omega = [0, 1]$. Want to choose a real number, all equally likely.
- If $\mathbb{P}(\{0\}) = \alpha > 0$ then $\mathbb{P}(\{0, 1, \frac{1}{2})$ $\frac{1}{2}, \ldots, \frac{1}{n}$ $\left\{\frac{1}{n}\right\}$) = $(n+1)\alpha$ £ if n large as $\mathbb{P} > 1$.
- So $\mathbb{P}({0}) = 0$, or $\mathbb{P}({0})$ is undefined.
- What about $\mathbb{P}\left(\left\{x : x \leq \frac{1}{3}\right\}\right)$ $\frac{1}{3}$)?
	- $-$? "Add up" all $\mathbb{P}(\{x\})$ for $x \leq \frac{1}{3}$ $\frac{1}{3}$. However this range is uncountable and we can't take a sum of uncountably many terms.

Aside

Question

Can we choose uniformly from an infinite countable set? (E.g. $\Omega = \mathbb{N}$ or $\Omega =$ $\mathbb{Q} \cap [0,1]$

Answer

No it is not possible but that's ok there *∃* lots of interesting probability measures of N!

Proof. Suppose possible

• $\mathbb{P}(\{0\}) = \alpha > 0 \quad \forall \omega \in \Omega$. Then $\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} \alpha = \infty$. I of $P2 : \mathbb{P}(\Omega) = 1.$

•
$$
\mathbb{P}(\{0\}) = 0 \quad \forall \omega \in \Omega
$$
. Then $\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} 0 = 0$.

Proposition 1.1 (From the axioms)

•
$$
\mathbb{P}(A^c) = 1 - \mathbb{P}(A)
$$

\n*Proof.* A, A^c are disjoint. $A \cup A^c = \Omega$.
\n $\implies \mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(\Omega) = 1$

- $\mathbb{P}(\varnothing) = 0$
- If $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

§1.1 Examples of Probability Spaces

Example 1.2 (Uniform Choice)

 Ω finite, $\Omega = {\omega_1, \ldots, \omega_n}$, \mathcal{F} = all subsets. *uniform* choice (equally likely)

$$
\mathbb{P}: \mathcal{F} \to [0,1], \; \mathbb{P}(A) = \frac{|A|}{|\Omega|}.
$$

 \Box

 $\text{In particular: } \mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|} \quad \forall \ \omega \in \Omega.$

Example 1.3 (Choosing without replacement) *n* indistinguishable marbles labelled $\{1, \ldots, n\}$. Pick $k \leq n$ marbles uniformly at random. Here: $\Omega = \{A \subseteq \{1, ..., n\}, |A| = k\}$ $|\Omega| = {n \choose k}$

Example 1.4 (Well-shuffled deck of cards) Uniformly chosen *permutation* of 52 cards.

$$
\Omega = \{\text{all permutations of 52 cards}\}\
$$

$$
|\Omega| = 52!
$$

$$
\mathbb{P}(\text{first three cards}) = \frac{52 \times 12 \times 11 \times 49!}{52!} = \frac{22}{425}
$$

$$
\text{Note:} = \frac{12}{51} \times \frac{11}{50}
$$

Example 1.5 (Coincident Birthdays)

There are *n* people; what is the probability that at least two of them share a birthday?

Assumptions:

- No leap years! (365 days)
- All birthdays are equally likely

Let $\Omega = \{1, \ldots, 365\}^n$ and $\mathcal{F} = \mathcal{P}(\Omega)$. Let $A = \{$ at least two people share the same birthday $\}$ and so $A^c = \{$ all *n* birthdays are different $\}$.

$$
\mathbb{P}(A^c) = \frac{|A^c|}{|\Omega|} = \frac{365 \times 364 \cdots \times (365 - n + 1)}{365^n}
$$

$$
\mathbb{P}(A) = 1 - \mathbb{P}(A^c)
$$

Note that at $n = 22$, $\mathbb{P}(A) \approx 0.476$ and at $n = 23$, $\mathbb{P}(A) \approx 0.507$. So when there are at least 23 people in a room, the probability that two of them share a birthday is around 50%.

KEY IDEA: Calculating $\mathbb{P}(A^c)$ is easier than $\mathbb{P}(A)$.

§2 Combinatorial Analysis

§2.1 Subsets

Question

Let Ω be finite and $|\Omega| = n$. How many ways to *partition* Ω into *k* disjoint subsets $\Omega_1, \ldots, \Omega_k$ with $|\Omega_i| = n_i$ (with $\sum_{i=1}^k n_i = n$)?

Answer

$$
M = {n \choose n_1} {n - n_1 \choose n_2} {n - n_1 - n_2 \choose n_3} \cdots {n - (n_1 + \cdots + n_{k-1}) \choose n_k}
$$

\nChoose Then choose
\nfirst part second part
\n
$$
= \frac{n!}{n_1!(n - n_1)!} \times \frac{(n - n_1)!}{n_2!(n - n_1 - n_2)!} \times \frac{[n - (n + n_1 + \cdots + n_{k-1})]!}{0!n_k!}
$$
\n
$$
= \frac{n!}{n_1!n_2! \cdots n_k!}
$$
\n
$$
= {n \choose n_1, n_2, \dots, n_k}
$$

\nMultipomial coefficient

Key sanity check

- Does ordering of the subsets matter?

E.g. Is $\Omega_2 = \{3, 4, 7\}$, $\Omega_3 = \{1, 5, 8\}$ equal to $\Omega_3 = \{3, 4, 7\}$, $\Omega_2 = \{1, 5, 8\}$? No, ordering does matter as we put elements first in the second subset then the third.

§2.2 Random Walks

$$
\Omega = \{ (X_0, X_1, \dots, X_n) : X_0 = 0, |X_n - X_{k-1}| = 1 \,\forall \, k = 1, \dots, n \}.
$$

$$
|\Omega| = 2^n \text{ (we can go either up or down at each } k)
$$

 $\mathbb{P}(X_n = n) = \frac{1}{2^n}$ $\mathbb{P}(X_n = 0) = 0$ if *n* is odd What about $\mathbb{P}(X_n = 0)$ when *n* is even

Idea - Choose $\frac{n}{2}$ *k*s for $X_k = X_{k-1} + 1$ and the rest $X_k = X_{k-1} - 1$ (i.e. go up half the time and down the other half).

$$
\mathbb{P}(X_n = 0) = 2^{-n} \binom{n}{\frac{n}{2}}
$$

$$
= \frac{n!}{2^n \left(\frac{n}{2}!\right)^2}
$$

Question

What happens when *n* is large?

§2.3 Stirling's Formula

Notation. Let (a_n) , (b_n) be two sequences. Say $a_n \sim b_n$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$.

Example 2.1 $n^2 + 5n + \frac{6}{n} \sim n^2$

Example 2.2 (Non-Example) $\exp\left(n^2+5n+\frac{6}{n}\right)$ $\left(\frac{6}{n}\right) \approx \exp(n^2)$

Theorem 2.1 (Stirling) *n*! *∼* $\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}$ as $n \to \infty$.

Theorem 2.2 (Weaker Version) log *n*! *∼ n* log *n*.

Proof. $log(n!) = log 2 + \cdots + log n$.

- \bullet log *x* is increasing
- $\log x$ has a nice integral!

 \Box

§2.4 (Ordered) compositions

Definition 2.1 (Composition) A **composition** of *m* with *k* parts is a sequence (*m*1*, . . . , mk*) of non-negative integers with $m_1 + \cdots + m_k = m$.

Example 2.3

 $3+0+1+2=6 \neq 1+2+0+3=6$ *⋆ ⋆ ⋆ || ⋆ | ⋆ ⋆*

There is a bijection between compositions *and* sequences of *m* stars and (*k −* 1) dividers. So the number of compositions is $\binom{m+k-1}{m}$.

Comment: Easy to mistake *k* with *k −* 1 in no. of dividers.

§3 Properties of Probability measures

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathbb{P}: \mathcal{F} \to [0, 1]$.

Definition 3.1 (Countable additivity) $P3: \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$ for $(A_n)_{n \in \mathbb{N}}$ disjoint.

Question What if the sets are not disjoint?

§3.1 Countable sub-additivity

Proposition 3.1 (Countable sub-additivity) Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of events in *F*. Then

$$
\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n\in\mathbb{N}}\mathbb{P}(A_n).
$$

May also be called a *union bound*.

Intuition:

 $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$ "double counts" some sub-events.

Proof. Idea: Rewrite $\bigcup_{n\in\mathbb{N}} A_n$ as a *disjoint* union. Define $B_1 = A_1$ and $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})$ *∈F*(by Sheet 1) *∀ n ≥* 2.

§3.2 Continuity

Proposition 3.2 (Continuity)

Let $(A_n)_{n \in \mathbb{N}}$ be an increasing sequence of events in *F*, i.e. $A_n \subseteq A_{n+1} \quad \forall n$. Then $\mathbb{P}(A_n) \leq \mathbb{P}(A_{n+1})$. So $\mathbb{P}(A_n)$ converges as $n \to \infty$.^{*a*}

 $In fact: \lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n\in\mathbb{N}} A_n).$

^aAs probabilities are bounded above by 1 and increasing.

For motivation try Q6, Sheet 1.

Proof. Let us reuse the *Bn*s from the previous subsection.

- $\bigcup_{k=1}^{n} B_k = A_n$ (disjoint union).
- $\bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} A_n$

§3.3 Inclusion-Exclusion Principle

Background: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$. Similarly: *A*, *B*, $C \in \mathcal{F}$

 $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(C \cap A) + \mathbb{P}(A \cap B \cap C).$

Proposition 3.3 (Inclusion-Exclusion Principle) Let $A_1, \ldots, A_n \in \mathcal{F}$, then:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) - \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cap \dots \cap A_{n})
$$
\n
$$
= \sum_{\substack{I \subset \{1, \dots, n\} \\ I \neq \varnothing}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)
$$

Note: $\sum_{1\leq i_1< i_2< i_3\leq n}$ is the sum of all triples that are distinct and unordered.

Proof. By induction. For $n = 2$ it holds (Q4e, Sheet 1).

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \cup A_{n}\right)
$$

Using $n = 2$ case we get:

$$
= \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_i\right) + \mathbb{P}(A_n) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_i\right) \cap A_n\right)
$$

We want to break down the final element on the RHS

Idea:
$$
\left(\bigcup_{i=1}^{n-1} A_i\right) \cap A_n = \bigcup_{i=1}^{n-1} (A_i \cap A_n)
$$

If we apply IEP to $\bigcup_{i=1}^{n-1} (A_i \cap A_n)$ we need to calculate $\bigcap_{i \in J} (A_i \cap A_n)$

$$
\bigcap_{i\in J} (A_i \cap A_n) = \bigcap_{i\in J \cup \{n\}} A_i, \qquad J \subset \{1, ..., n-1\}
$$
\n
$$
\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{\substack{J \subset \{1, ..., n-1\} \\ J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i\in J} A_i\right) + \mathbb{P}(A_n)
$$
\n
$$
= \sum_{\substack{J \subset \{1, ..., n-1\} \\ J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i\in J \cup \{n\}} A_i\right)
$$
\n
$$
J \cup \{n\} \mapsto I.
$$
\n
$$
= (-1)^{|J|+1} \mapsto (-1)^{|I|+1}
$$
\n
$$
= \sum_{\substack{I \subset \{1, ..., n-1\} \\ I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i\in I} A_i\right) + \mathbb{P}(A_n)
$$
\n
$$
+ \sum_{\substack{I \subset \{1, ..., n-1\} \\ \text{just changed the labels} \\ n\in I, |I| \ge 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i\in I} A_i\right)
$$
\n
$$
= \sum_{\substack{I \subset \{1, ..., n\} \\ n\in I, |I| \ge 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i\in I} A_i\right).
$$

Let us check that we have indeed counted all subsets *I*.

\n- \n
$$
\sum_{\substack{I \subset \{1,\ldots,n-1\} \\ I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right)
$$
 accounts for all subsets where $n \notin I$.\n
\n- \n
$$
\mathbb{P}(A_n)
$$
 accounts for $\{n\}$ \n
\n- \n
$$
\sum_{\substack{I \subset \{1,\ldots,n\} \\ n \in I, |I| > 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right)
$$
 accounts for all subsets where $n \in I$ and $I \neq \{n\}$.\n
\n

§3.4 Bonferroni Inequalities

Question

What if you *truncate* IEP (Inclusion-Exclusion Principle)?

Proposition 3.4 (Bonferroni Inequality) Recall: Countable sub-additivity - $\mathbb{P}(\cup A_i) \leq \sum \mathbb{P}(A_i).$

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_{1} < i_{2} < \cdots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \cdots \cap A_{i_{k}}) \quad \text{if } r \text{ is odd}
$$
\n
$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_{1} < i_{2} < \cdots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \cdots \cap A_{i_{k}}) \quad \text{if } r \text{ is even}
$$

Proof. By induction on *r* and *n*. Let *r* be odd

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right)
$$

$$
\mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) \leq \sum_{\substack{J \subset \{1, \ldots, n-1\} \\ 1 \leq |J| \leq r}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)
$$

$$
\mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right) \geq \sum_{\substack{J \subset \{1, \ldots, n-1\} \\ 1 \leq |J| \leq r-1}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J \cup \{n\}} A_{i}\right)
$$

$$
\xrightarrow{1 \leq |J| \leq r-1} \frac{(-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J \cup \{n\}} A_{i}\right)}{r-1 \text{ case on } (A_{i} \cap A_{n})}
$$

Using the same rearranging as in the proof of Inclusion-Exclusion Principle

$$
\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \le \sum_{\substack{I \subset \{1,\ldots,n\} \\ 1 \le |I| \le r}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right).
$$

The case of r being even is similar, simply note all three inequalities are reversed. \Box

a J doesn't include *n* and we only want *r* elements in the intersection

Question

When is it good to truncate at e.g. $r = 2$?

§3.5 Counting with IEP

Uniform probability measure on Ω , $|\Omega|$ < ∞ . $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$ \forall $A \subseteq \Omega$. Then $\forall A_1, \ldots, A_n \subseteq \Omega$

$$
|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{i_1 < \cdots < i_k} |A_i \cap \cdots \cap A_{i_k}|
$$

(and similarly for Bonferroni Inequalities).

Example 3.1 (Surjections)

What is the probability that a function $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}, n \ge m$ is a surjection? Let $\Omega = \{f : \{1, \ldots, n\} \to \{1, \ldots, m\}\}\$ and $A = \{f \in \Omega : \text{Image}(f) =$ *{*1*, . . . , m}}*. $\forall i \in \{1, \ldots, m\}$ define $B_i = \{f \in \Omega : i \notin \text{Image}(f)\}.$

Key observations:

•
$$
A = B_1^c \cap \dots B_m^c
$$

$$
= (B_1 \cup \dots \cup B_m)^c
$$

• $|B_{i_1} \cap \cdots \cap B_{i_k}|$ is nice to calculate.

$$
|B_{i_1} \cap \dots \cap B_{i_k}| = |\{f \in \Omega : i_1, \dots, i_k \notin \text{Image}(f)|
$$

= $(m - k)^n$

$$
IEP \to |B_1 \cup \dots \cup B_m| = \sum_{k=1}^m (-1)^{k+1} \sum_{i_1 < \dots < i_k} \underbrace{|B_{i_1} \cap \dots \cap B_{i_k}|}_{\text{same for all } i_1, \dots, i_k}
$$

$$
= \sum_{k=1}^{m} (-1)^{k+1} {m \choose k} (m-k)^n
$$

$$
|A| = m^n - |B_{i_1} \cup \dots \cup B_{i_k}|
$$

$$
= \sum_{k=0}^{m} (-1)^k {m \choose k} (m-k)^n
$$

Example 3.2 (Derangements)

What is the probability that a permutation has no fixed points? Derangements can be useful in a Secret Santa.

 $\Omega = \{\text{permutations of } \{1, \ldots, n\}\}\$ and the derangements, *D*, are $\{\sigma \in \Omega : \sigma(i) \neq 0\}$ *i* $\forall i = 1, ..., n$ *}*.

Question

Is $\mathbb{P}(D) = \frac{|D|}{|\Omega|}$ large or small (e.g. when $n \to \infty$?)

 $∀ i ∈ {1, ..., n} : A_i = {σ ∈ Ω : σ(i) = i}.$ *Key observations*:

•
$$
D = A_1^c \cap ... A_n^c = (\bigcup_{i=1}^n A_i)^c
$$
.
\n• $\mathbb{P}(A_{i_1} \cap ... \cap A_{i_k}) = \frac{(n-k)!}{n!}$
\n $IEP \to \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n (-1)^{k+1} \sum_{i_1 < ... < i_k} \mathbb{P}(A_{i_1} \cap ... \cap A_{i_k})$
\n $= \sum_{k=1}^n (-1)^{k+1} {n \choose k} \frac{(n-k)!}{n!}$
\n $= \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!}$
\n $\mathbb{P}(D) = 1 - \mathbb{P}\left(\bigcup_{i=1}^n A_i\right)$
\n $= 1 - \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}$
\n $= \sum_{k=0}^n \frac{(-1)^k}{k!}$
\n $\lim_{n \to \infty} \mathbb{P}(D) = \sum_{k=0}^\infty \frac{(-1)^{k+1}}{k!}$
\n $= e^{-1} \approx 0.37$.

Remark 2*.*

• What if instead $\Omega' = \{ \text{all functions } f : \{1, \ldots, n\} \text{ to itself} \}$?

$$
D = \{f \in \Omega' : f(i) \neq i \quad \forall i = 1, ..., n\}.
$$

$$
\mathbb{P}(D) = \frac{(n-1)^n}{n^n}
$$

$$
= \left(1 - \frac{1}{n}\right)
$$

$$
\lim_{n \to \infty} D = e^{-1}.
$$

- We would liked to have calculated $\mathbb{P}(D)$ by doing $\left(\frac{n-1}{n}\right)^n$ as we have *n* choices each with probability *ⁿ−*¹ *n* . We will be allowed to do this soon! See Example 3.6
- $f(i)$ is a random quantity associated to Ω . We will be allowed to study $f(i)$ as a *random variable* soon.
- We are allowed to toss a fair coin *n* times, $\Omega = \{H, T\}^n$. But we have not [yet](#page-21-1) studied tossing an unfair coin *n* times.

§3.6 Independence

 $(\Omega, \mathcal{F}, \mathbb{P})$ as before.

Definition 3.2 (Indepence) Events $A, B \in \mathcal{F}$ are **independent** $(A \perp \perp B)$ if

$$
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).
$$

A countable^{*a*} collection of events (A_n) are independent if ∀ distinct $i_1, \ldots, i_k{}^b$ we have:

$$
\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \prod_{j=1}^k \mathbb{P}(A_{i_j}).
$$

a including finite ${}^{\boldsymbol{b}}\boldsymbol{k}$ is finite

Remark 3 (Caution)*.* "Pairwise independence" does not imply independence.

Example 3.3

$$
\Omega = \{(H, H), (H, T), (T, H), (T, T)\}
$$

\n
$$
\mathbb{P}(\{\omega\}) = \frac{1}{4} \quad \forall \omega \in \Omega.
$$

\nA = first coin is $H = \{(H, H), (H, T)\}.$
\nB = second coin is $H = \{(T, H), (H, H)\}.$
\nC = both coins have the same outcome = $\{(T, T), (H, H)\}.$
\n
$$
\mathbb{P}(A) = \mathbb{P}(B) = P(C) = \frac{1}{2}.
$$

\n
$$
A \cap B = A \cap C = B \cap C = \{(H, H)\}.
$$

\n
$$
\mathbb{P}(A \cap B) = \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C) = \frac{1}{4}.
$$
 Pairwise independence \checkmark
\n
$$
\mathbb{P}(A \cap B \cap C) = \frac{1}{4} \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C).
$$
 Independence \times

Example 3.4 (Independence)

•
$$
\Omega' = \{ \text{all functions } f : \{1, ..., n\} \text{ to itself} \}
$$

$$
A_i = \{ f \in \Omega' : f(i) = i \}.
$$

$$
\mathbb{P}(A_i) = \frac{n^{n-1}}{n^n} = \frac{1}{n}
$$

$$
\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{n^{n-k}}{n^n}
$$

$$
= \frac{1}{n^k}
$$

$$
= \prod_{j=1}^k \mathbb{P}(A_{i_j})
$$

Here: $\left(A_{i}\right)$ are independent events.

$$
\Omega = \{ \sigma : \text{ permutation of } \{1, ..., n\} \}
$$
\n
$$
A_i = \{ \sigma \in \Omega : \sigma(i) = i \}
$$
\n
$$
\mathbb{P}(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}.
$$
\n
$$
i \neq j \quad \mathbb{P}(A_i \cap A_j) = \frac{(n-2)!}{n!}
$$
\n
$$
= \frac{1}{n(n-1)}
$$
\n
$$
\neq \mathbb{P}(A_i)\mathbb{P}(A_j)
$$

Here: $\left(A_{i}\right)$ are not independent events.

§3.6.1 Properties

Claim 3.1

If *A* is independent of *B*, then *A* is also independent of B^c .

Proof.

 $\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$ $= \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$ $= \mathbb{P}(A)[1 - \mathbb{P}(B)]$ $= \mathbb{P}(A) \mathbb{P}(B^c)$

 \Box

 \Box

Claim 3.2 *A* is independent of *B* = Ω and of *C* = \varnothing

Proof.
$$
\mathbb{P}(A \cap \Omega) = P(A) = \mathbb{P}(A) \mathbb{P}(\Omega)
$$
 and so $A \perp \mathbb{P}(\Omega)$ by Claim 1.

§3.7 Conditional Probability

 $(\Omega, \mathcal{F}, \mathbb{P})$ as before.

Consider *B* \in *F* with $\mathbb{P}(B) > 0$, *A* \in *F*

Definition 3.3 (Conditional Probability)

The **conditional probability** of *A* given *B* is $\mathbb{P}(A | B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.

"The probability of *A* if we know *B* happened". (e.g. revealing information in succession)

Example 3.5 *A, B* independent.

$$
\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)
$$

"Knowing whether *B* happened doesn't affect the probability of *A*".

§3.7.1 Properties

- P1 $\mathbb{P}(A | B) \geq 0$
- P2 $\mathbb{P}(B | B) = 1 = \mathbb{P}(\Omega | B)$
- P3 (A_n) disjoint events $\in \mathcal{F}$:

Claim 3.3

$$
\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\mid B\right)=\sum_{n\in\mathbb{N}}\mathbb{P}(A_n\mid B)
$$

Proof.

$$
\mathbb{P}\left(\bigcup_{n\in\mathbb{N}} A_n | B\right) = \frac{\mathbb{P}\left((\bigcup_n A_n) \cap B\right)}{\mathbb{P}(B)}
$$

=
$$
\frac{\mathbb{P}\left(\bigcup_n (A_n \cap B)\right)}{\mathbb{P}(B)}, \quad \bigcup (A_n \cap B) \text{ is a disjoint union}
$$

=
$$
\frac{\sum_n \mathbb{P}(A_n \cap B)}{\mathbb{P}(B)}
$$

=
$$
\sum_{n\in\mathbb{N}} \mathbb{P}(A_n | B)
$$

Summary: Use definition and apply P1, P2, P3 to the numerator.

 \Box

 $\mathbb{P}(\bullet | B)$ is a function from $\mathcal{F} \to [0, 1]$ that satisfies the rules to be a probability measure on Ω.

Aside?

Consider $\Omega' = B$ (especially in finite or countable setting). Let $\mathcal{F}' = \mathcal{P}(B)$. Then $(\Omega', \mathcal{F}', \mathbb{P}(\bullet | B))$ also satisfies rules to be a probability measure on Ω' .

$$
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B \mid A)
$$
\n
$$
\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2)\dots\mathbb{P}(A_n \mid A_1 \cap \dots \cap A_{n-1})
$$
\n(1)

Example 3.6

Uniform choice of a permutation $(\sigma(1), \sigma(2), \ldots, \sigma(n)) \in \Sigma_n$.

Claim 3.4

$$
\mathbb{P}\left(\sigma(k) = i_k \mid \sigma(1) = i, \dots, \sigma(k-1) = i_{k-1}\right), \quad i_1, \dots, i_{k-1} \text{ distinct.}
$$
\n
$$
= \begin{cases} 0 & \text{if } i_k \in \{i_1, \dots, i_{k-1}\} \\ \frac{1}{n-k+1}^a & \text{else} \end{cases}
$$

*^a*This is an example of (Ordered) compositions

Proof.

$$
\mathbb{P}(\sigma(k) = i_k | \sigma(1) = i, ..., \sigma(k-1) = i_{k-1}) = \frac{\mathbb{P}(\sigma(1) = i, ..., \sigma(k) = i_k)}{\mathbb{P}(\sigma(1) = i, ..., \sigma(k-1) = i_{k-1})}
$$

$$
= \frac{\frac{(n-k)!}{n!}}{\frac{(n-k+1)!}{n!}}
$$

$$
= \frac{(n-k)!}{(n-k+1)!}
$$

$$
= \frac{1}{n-k+1}
$$

$$
\mathbb{P}(\sigma(1) = i, ..., \sigma(k) = i_k) = 0 \text{ if } i_k \in \{i_1, ..., i_{k-1}\}.
$$

§3.7.2 Law of Total Probability and Bayes' Formula

Definition 3.4 (Partition)

 $(B_1, B_2, \dots)^a \in \Omega$ is a **partition** of Ω if:

- $\Omega = \bigcup_n B_n$
- (B_n) a[re](#page-21-2) disjoint

*^a*finite or countable

Theorem 3.1 (Law of Total Probability)

 (B_n) a finite or countable partition of Ω with $B_n \in \mathcal{F} \ \forall \ n \text{ s.t. } \mathbb{P}(B_n) > 0$. Then

∀ A ∈ F:

$$
\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \mid B_n)\mathbb{P}(B_n).
$$

Also know as "Partition Theorem".

Proof. Note that $\bigcup_n (A \cap B_n) = A$. $\mathbb{P}(A) = \sum$ *n∈*N $\mathbb{P}(A \cap B_n)$ $=$ \sum *n* $\mathbb{P}(A \mid B_n)\mathbb{P}(B_n)$ by Equation (1)

Theorem 3.2 (Bayes' Formula) Same setup as above

$$
\mathbb{P}(B_n \mid A) = \frac{\mathbb{P}(A \mid B_n)\mathbb{P}(B_n)}{\sum_m \mathbb{P}(A \mid B_m)\mathbb{P}(B_m)}.
$$

Let $n = 2$: $\mathbb{P}(B | A)\mathbb{P}(A) = \mathbb{P}(A | B)\mathbb{P}(B) = \mathbb{P}(A \cap B)$

Proof.

$$
\mathbb{P}(B_n | A) = \frac{\mathbb{P}(A \cap B_n)}{\mathbb{P}(A)}
$$

=
$$
\frac{\mathbb{P}(A | B_n)\mathbb{P}(B_n)}{\sum_m \mathbb{P}(A | B_m)\mathbb{P}(B_m)}.
$$

 \Box

 \Box

Example 3.7 (Lecture course)

Consider a Lecture course which has 2*/*3 of the lectures on weekdays and 1*/*3 on weekends. Let

$$
\mathbb{P}(\text{forget notes} \mid \text{weekday}) = \frac{1}{8}
$$

$$
\mathbb{P}(\text{forget notes} \mid \text{weekend}) = \frac{1}{2}
$$

What is $\mathbb{P}(\text{weekend } | \text{ forget notes})$? Let $B_1 = \{\text{weekday}\}, B_2 = \{\text{weekend}\}$ and

 $A = \{$ forget notes $\}.$ By LTP (Law of Total Probability): $\mathbb{P}(A) = \frac{2}{3} \times \frac{1}{8} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{4}$ $\frac{1}{4}$. By Bayes' Formula: $\mathbb{P}(B_2 \mid A) = \frac{1}{3} \times \frac{1}{2}$ $\frac{1}{2}$ / $\frac{1}{4}$ = $\frac{2}{3}$ $\frac{2}{3}$.

Ex[ample 3.8](#page-22-0) [\(Disease Testing\)](#page-21-3)

Suppose *p* are infected and $(1 - p)$ are not. P(tests positive | infected) = $1 - \alpha$ and $\mathbb{P}(\text{tests positive } | \text{ not infected}) = \beta \text{ where } \alpha, \beta \in (0,1).$

We want to work out \mathbb{P} (infected | test positive).

By LTP: $\mathbb{P}(\text{test positive}) = p(1 - \alpha) + (1 - p)\beta$. By Bayes' Formula: $\mathbb{P}(\text{infected } | \text{ test positive}) = \frac{p(1-\alpha)}{p(1-\alpha)+(1-p)\beta}.$

 β uppose $p \ll \beta$ then $p(1-\alpha) \ll (1-p)\beta$ so $\mathbb{P}(\text{infected }|\text{ test positive}) \sim \frac{p(1-\alpha)}{(1-p)\beta} \sim \frac{p}{\beta}$ *β* wh[ich is small.](#page-22-0)

Example 3.9 (Simpson's Paradox)

Scientists ask: do jelly beans make you tongue change colour?

The conclusion from this example should be that the Cambridge methodology is different to the Oxford one rather than anything about blue/ green jelly beans.*^a*

Green 28 22 56%

Let $A = \{\text{change colour}\}, B = \{\text{blue}\}, B^C = \{\text{green}\}, C = \{\text{Cambridge}\}, C^c = \{\text{blue}\}$ *{*Oxford*}*.

> $\mathbb{P}(A \mid B \cap C) > \mathbb{P}(A \mid B^c \cap C)$ $\mathbb{P}(A \mid B \cap C^c) > \mathbb{P}(A \mid B^c \cap C^c)$

$$
\implies \mathbb{P}(A \mid B) > \mathbb{P}(A \mid B^c)
$$

*^a*Obviously this is a frivolous example however if we changed Oxford to November 2021, Cambridge to January 2021 and we were measuring vaccine efficacy for different vaccines we would get similar results. And it would be reasonable to conclude that the main underlying factor was a change in the viral landscape rather than waning efficacy.

Theorem 3.3 (Law of Total Probability for Conditional Probabilities) Suppose C_1, C_2, \ldots a partition of *B*.

$$
\mathbb{P}(A \mid B) = \sum_{n} \mathbb{P}(A \mid C_n)\mathbb{P}(C_n \mid B)
$$

Proof.

$$
\mathbb{P}(A | B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

\n
$$
= \frac{\mathbb{P}(A \cap (U_n C_n))}{\mathbb{P}(B)}
$$

\n
$$
= \frac{\mathbb{P}(U_n(A \cap C_n))}{\mathbb{P}(B)}
$$

\n
$$
= \frac{\sum_n \mathbb{P}(A \cap C_n)}{\mathbb{P}(B)}
$$

\n
$$
= \frac{\sum_n \mathbb{P}(A | C_n)\mathbb{P}(C_n)}{\mathbb{P}(B)}
$$

\n
$$
= \sum_n \mathbb{P}(A | C_n) \frac{\mathbb{P}(B \cap C_n)}{\mathbb{P}(B)} \quad C_n \subset B \implies B \cap C_n = C_n
$$

\n
$$
= \sum_n \mathbb{P}(A | C_n)\mathbb{P}(C_n | B)
$$

 \Box

Non Examinable

Special Case:

- If all $\mathbb{P}(C_n)$ are equal then so are $\mathbb{P}(C_n \mid B)$. Note $\sum_n \mathbb{P}(C_n \mid B) = 1$.
- If $\mathbb{P}(A | C_n)$ are all equal.

 ${}^{1}\mathbb{P}(C_{n} | B) = \frac{\mathbb{P}(C_{n} \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(C_{n})}{\mathbb{P}(B)}.$

Example 3.10 (Well-shuffled deck of cards)

Uniformly chosen *permutation*, $\sigma \in \Sigma_{52}$, of 52 cards. $\{1, 2, 3, 4\}$ are *aces*. Let *A* = { $\sigma(1), \sigma(2)$ are aces}, *B* = { $\sigma(1)$ is an ace} = { $\sigma(1) \leq 4$ }, $C_1 = {\sigma(1)}$ = 1*},...,C*₄ = { $\sigma(1) = 4$ }*.*

Note:

•
$$
\mathbb{P}(A \mid C_i) = \mathbb{P}(\sigma(2) \in \{1, 2, 3, 4\} \mid \sigma(1) = i) \quad i \le 4
$$

$$
= \frac{3}{51} \text{ by Example 3.6}
$$

• $\mathbb{P}(C_1) = \cdots = \mathbb{P}(C_4) = \frac{1}{52}.$ So $\mathbb{P}(A | B) = \frac{3}{51}$ and $\mathbb{P}(A) = \mathbb{P}(B)\mathbb{P}(A | B) = \frac{4}{52} \times \frac{3}{52}$ 51

§4 Discrete Random Variables

Motivation: Roll two dice. $\Omega = \{1, \ldots, 6\}^2 = \{(i, j) : 1 \le i, j \le 6\}$. If we restrict our attention to:

- the first dice e.g. $\{(i, j) : i = 3\}$.
- the sum of the dice e.g. $\{(i, j) : i + j = 8\}$.
- the max of the dice e.g. $\{(i, j) : i, j \le 4, i \text{ or } j = 4\}.$

This is annoying and we want to move on from sets.

Goal: "Random real-valued measurements", we want the value of the first dice to be *X* and the sum to be $X + Y$...

Definition 4.1 (Discrete Random Variable)

A **discrete random variable** *X* on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a function *X* : $\Omega \rightarrow \mathbb{R}$ s.t.

- $\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}$
- Image(*X*) if finite or countable (subset of \mathbb{R}).
- We abbreviate $\{\omega \in \Omega : X(\omega) = x\}$ as $\{X = x\}$. So $\mathbb{P}(X = x)$ is valid.
- Often $\text{Image}(X) = \mathbb{Z}$ or \mathbb{N}_0 or $\{0, 1\}$ etc. *not* $\{\text{Heads or Tails}\}.$

If Ω is finite or countable and $\mathcal{F} = \mathcal{P}(\Omega)$ both blue bullet points hold automatically.

Example 4.1 (Part II Applied Probability)

"random arrival process". Let $\Omega = \{\text{countable subsets } (a_1, a_2, \dots) \text{ of } (0, \infty)\}\$ and N_t = number of arrivals by time $t = |\{a_i : a_i \le t\}| \in \mathbb{N}_0$ is a discrete RV (random variable) for each time *t*.

Definition 4.2 (Probability Mass Function)

The **probability mass function** of discrete RV *X* is the function $p_X : \mathbb{R} \to [0,1]$ given by $p_X(x) = \mathbb{P}(X = x)$ $\forall x \in \mathbb{R}$.

Note.

• if
$$
x \notin \text{Image}(X)
$$
 then $p_X(x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}) = \mathbb{P}(\emptyset) = 0.$

$$
\sum_{x \in \text{Im}(X)} p_X(x) = \sum_{x \in \text{Im}(X)} \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})
$$

$$
= \mathbb{P}\left(\bigcup_{x \in \text{Im}(X)} \{\omega \in \Omega : X(\omega) = x\}\right)
$$

$$
= \mathbb{P}(\Omega)
$$

$$
= 1
$$

Example 4.2 (Indicator function) For event *A* \in *F*, define 1_A : $\Omega \rightarrow \mathbb{R}$ by

$$
1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{else} \end{cases}
$$

 1_A is a discrete RV with Image = {0, 1}. $p_{1_A}(1) = \mathbb{P}(1_A = 1) = \mathbb{P}(A)$, $p_{1_A}(0) =$ $\mathbb{P}(1_A = 0) = \mathbb{P}(A^c)$ and $p_{1_A}(x) = 0 \quad \forall x \notin \{0, 1\}.$

This encodes "did *A* happen" as a real number.

Remark 4*.* Given a pmf *p^X* (probability mass function), we can always construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a RV defined on it with this pmf.

- $\Omega = \text{Im}(X)$ i.e. $\{x \in \mathbb{R} : p_X(x) > 0\}$
- $\mathcal{F} = \mathcal{P}(\Omega)$
- $\mathbb{P}(\{x\}) = p_X(x)$ and extend to all $A \in \mathcal{F}$

§4.1 Discrete Probability Distributions

§4.1.1 Finite Ω

Definition 4.3 (Bernoulli Distribution - "(biased) coin toss") If *X* ∼ Bern(*p*) where $p \in [0,1]$ then Im(*X*) = {0,1}, $p_X(1) = \mathbb{P}(X = 1) = p$ and $p_X(0) = 1 - p$.

Example 4.3 $1_A \sim \text{Bern}(p)$ with $p = \mathbb{P}(A)$.

Definition 4.4 (Binomial Distribution)

If *X* ∼ Bin (n, p) where $n \in \mathbb{Z}^+$ and $p \in [0, 1]$ then Im $(X) = \{0, 1, \ldots, n\}$, $p_X(k) =$ $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. $\sum_{k=0}^n p_X(k) = (p + (1-p))^n = 1$.

The binomial distribution can be used to model the number of heads when a coin is tossed *n* times.

§4.1.2 More than one RV

Motivation: Roll a dice with outcome $X \in \{1, 2, \ldots, 6\}$. Events: $A = \{1 \text{ or } 2\}$, $B =$ *{*1 or 2 or 3*}*, *C* = {1 or 3 or 5*}*. 1_A ∼ Bern $\left(\frac{1}{3}\right)$ $\left(\frac{1}{3}\right)$, 1_{*B*} \sim Bern $\left(\frac{1}{2}\right)$ $(\frac{1}{2}), 1_C \sim \text{Bern}\left(\frac{1}{2}\right)$ $rac{1}{2}$. *Note*: $1_A \leq 1_B$ for all outcomes but $1_A \leq 1_C$ for all outcomes *is false*.

Definition 4.5 (Independent RVs)

Let X_1, \ldots, X_n be discrete RVs. We say X_1, \ldots, X_n are *independent* if:

 $\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \ldots \mathbb{P}(X_n = x_n) \quad \forall x_1, \ldots, x_n \in \mathbb{R}.$

(suffices to check $\forall x_i \in \text{Im}(X_i)$)

Example 4.4

 X_1, \ldots, X_n independent RVs each with the Bernoulli(p) distribution. Study $S_n =$ $X_1 + \cdots + X_n$. Then

$$
\mathbb{P}(S_n = k) = \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0, 1\}}} \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)
$$

$$
= \sum_{\substack{x_1 + \dots + x_n = k \\ x_1 + \dots + x_n = k}} \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n)
$$

$$
= \sum_{\substack{x_1 + \dots + x_n = k \\ x_1 + \dots + x_n = k}} p^{|\{i : x_i = 1\}|} (1 - p)^{|\{i : x_i = 0\}|}
$$

$$
= \binom{n}{k} p^k (1-p)^{n-k}.
$$

So S_n ∼ Bin (n, p) .

Example 4.5 (Non-example)

 $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ a uniform permutation.

Claim 4.1

 $\sigma(1)$ and $\sigma(2)$ are *not* independent.

Suffices to find i_1, i_2 s.t. $\mathbb{P}(\sigma(1) = i_1, \sigma(2) = i_2) \neq \mathbb{P}(\sigma(1) = i_1)\mathbb{P}(\sigma(2) = i_2)$. E.g. $\mathbb{P}(\sigma(1) = 1, \sigma(2) = 1) = 0 \neq \mathbb{P}(\sigma(1) = 1)\mathbb{P}(\sigma(2) = 1)$ =1*/n×*1*/n*

Consequence of definition

Let X_1, \ldots, X_n be independent. Then $\mathbb{P}(X_1 \in A_1, \ldots, X_n \in A_n) = \mathbb{P}(X \in A_1)$ $A_1) \ldots \mathbb{P}(X_n \in A_n) \quad \forall A_1, \ldots, A_n \subset \mathbb{R}$ countable.

§4.1.3 $\Omega = \mathbb{N}$ - "Ways of choosing a random integer"

Definition 4.6 (Geometric Distribution ("Waiting for success")) If *X* ∼ Geo(*p*) where $p \in (0, 1)$. Im(*X*) = {1, 2, . . . } $p_X(k)$ = $\mathbb{P}((k-1)$ failures, then success on the kth trial) = $(1-p)^{k-1}p$. Check: $\sum_{k\geq 1} (1-p)^{k-1}p = p \sum_{t\geq 0} (1-p)^t = \frac{p}{1-(1-p)} = 1.$

Alternatively: "Count how many failures before a success" $\text{Im}(Y) = \{0, 1, 2, \dots\}, p_Y(k) = \mathbb{P}(\text{k failures, then success on the (k+1)th trial}).$ Check: $\sum_{k \geq 0} (1 - p)^k p = 1$.

The geometric distribution can be used to model the number of coin tosses until we get a head.

Definition 4.7 (Poisson Distribution) If $X \sim Po(\lambda)$ (or $Poi(\lambda)$) with $\lambda \in (0, \infty)$. Im $(X) = \{0, 1, 2, \dots\}$ and $\mathbb{P}(X = k) =$ $e^{-\lambda} \lambda^k / k! \quad \forall \ k \ge 0.$ Check: $\sum_{k \ge 0} \mathbb{P}(X = k) = e^{\lambda} \sum_{k \ge 0} \frac{\lambda^k}{k!} = e^{\lambda} e^{\lambda}.$

Motivation: Consider $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$

Example 4.6 ("Arrival process")		
\leftarrow	\leftarrow	\leftarrow
\leftarrow	\leftarrow	\leftarrow
\leftarrow	\leftarrow	\leftarrow

Split time interval $[0, \lambda]$ into *n* small intervals.

- Probability of an arrival in each interval is *p*, independently across intervals.
- Total no. of arrivals is X_n .

$$
\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$

Fix *k* and let $n \to \infty$

$$
= \frac{n!}{n^k(n-k)!} \times \frac{\lambda^k}{k!} \times \left(1 - \frac{\lambda}{n}\right)^n \times \left(1 - \frac{1}{n}\right)^{-k}
$$

$$
\frac{n!}{n^k(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{n^k}
$$

$$
= 1 \times \left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \dots \times \left(1 - \frac{k-1}{n}\right)
$$

$$
\to 1 \quad \text{There are a fixed number of terms all converging to 1}
$$

$$
\mathbb{P}(X - k) \to e^{-\lambda} \frac{\lambda^k}{k!}
$$

$$
\mathbb{P}(X_n = k) \underset{n \to \infty}{\to} e^{-\lambda} \frac{\Lambda}{k!}.
$$

We might want to say $\text{Bin}(n, \frac{\lambda}{n})$ converges to $\text{Po}(\lambda)$, but what does convergence of random variables mean?

§4.2 Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$ and *X* a discrete RV. For now: *X* only takes non-negative values. "*X* ≥ 0 "

Definition 4.8 (Expectation) The **expectation of** *X* (or **expected value** or **mean**)

$$
\mathbb{E}[X] = \sum_{x \in \text{Im}(X)} x \mathbb{P}(X = x)
$$

$$
= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})
$$

"Average of values taken by X , weighted by p_X ".

Example 4.7 (Uniform Dice) *X* uniform on *{*1*,* 2*, . . . ,* 6*}*

$$
\mathbb{E}[X] = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6
$$

= 3.5

Note. $\mathbb{E}[X]$ need not be in $\text{Im}(X)$.

Example 4.8 (Binomial Distribution) Let *X* \sim Binomial (n, p)

$$
\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X = k)
$$

\n
$$
= \sum_{k=0}^{n} k {n \choose k} p^{k} (1-p)^{k}
$$

\n
$$
\text{Trick:} \quad k {n \choose k} = \frac{k \times n!}{k! \times (n-k)!}
$$

\n
$$
= \frac{n!}{(k-1)!(n-k)!}
$$

\n
$$
= n {n-1 \choose k-1}
$$

\n
$$
\mathbb{E}[X] = n \sum_{k=1}^{n} {n-1 \choose k-1} p^{k} (1-p)^{k}
$$

\n
$$
= np \sum_{k=1}^{n} {n-1 \choose k-1} p^{k-1} (1-p)^{k}
$$

\n
$$
= np \sum_{l=0}^{n-1} {n-1 \choose l} p^{l} (1-p)^{(n-1)-l}
$$

\n
$$
= np(p + (1-p))^{n-1}
$$

\n
$$
= np.
$$

Note. We would like to say:

$$
\mathbb{E}[\text{Bin}(n, p)] = \mathbb{E}[\text{Bern}(p)] + \cdots + \mathbb{E}[\text{Bern}(p)]
$$

We will be able to do this soon.

Example 4.9 (Poisson Distribution) Let $X \sim \text{Poisson}(\lambda)$

$$
\mathbb{E}[X] = \sum_{k\geq 0} k \mathbb{P}(X = k)
$$

=
$$
\sum_{k\geq 0} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}
$$

=
$$
\sum_{k\geq 1} e^{-\lambda} \frac{\lambda^k}{(k-1)!}
$$

=
$$
\lambda \sum_{k\geq 1} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}
$$
 pmf of Poisson(λ)
=
$$
\lambda.
$$

Note. We would like to say

$$
\mathbb{E}[\text{Poisson}(\lambda)] \approx \mathbb{E}\left[\text{Bin}\left(n, \frac{\lambda}{n}\right)\right] = \lambda
$$

It is not true in general that $\mathbb{P}(X_n = k) \approx \mathbb{P}(X = k) \implies \mathbb{E}[X_n] \approx \mathbb{E}[X]$

Not important

If *X* can take on any real value (not necessarily $X \geq 0$)

$$
\mathbb{E}[X] = \sum_{x \in \text{Im}(X)} x \mathbb{P}(X = x)
$$

unless: A, \sum *x>*0 *x∈*Im(*X*) $x\mathbb{P}(X=x) = +\infty$ and B, \sum *x<*0 *x∈*Im(*X*) $x\mathbb{P}(X=x) = -\infty$. Then we say $\mathbb{E}[X]$ is not defined. Do we really want to study $\infty + \frac{2}{3}$ 3 (*−∞*)

Summary:

- A and B, $\mathbb{E}[X]$ is not defined.
- A but not B, $\mathbb{E}[X] = +\infty$.²

 2 Some people say not defined instead of letting $\mathbb{E}[X] = \pm \infty$

- B but not A, $\mathbb{E}[X] = -\infty$.
- neither A nor B, X is then integrable i.e. $\mathbb{E}[X]$ absolutely converges.

Example 4.10

Most examples in the course are integrable *except*:

- $\mathbb{P}(X = n) = \frac{6}{\pi^2} \frac{1}{n^2}$ for $n \geq 1$. Note that $\sum \mathbb{P}(X = n) = 1$. Then $\mathbb{E}[X] = \sum_{n=1}^{\infty} \frac{6}{n^2} \frac{1}{n} = +\infty$.
- $\mathbb{P}(X = n) = \frac{3}{\pi^2} \frac{1}{n^2}$ for $n \in \mathbb{Z} \setminus \{0\}$. Then $\mathbb{E}[X]$ is not defined. "It's symmetric so $\mathbb{E}[X] = 0$ ", we have decided that this is wrong to prevent many things going wrong in second and third year courses in probability.

Example 4.11 (Indicator Function) $\mathbb{E}[1_A] = \mathbb{P}(A).$

§4.2.1 Properties of Expectation

Proposition 4.1

If $X \geq 0$, then $\mathbb{E}[X] \geq 0$ with equality iff $\mathbb{P}(X = 0) = 1$.

Proof.
$$
\mathbb{E}[X] = \sum_{\substack{x \in \text{Im}(X) \\ x \neq 0}} x \mathbb{P}(X = x)
$$

Proposition 4.2 (Linearity of expectation)

Given random variables *X*, *Y* (both integrable) on same probability space $\forall \lambda, \mu \in$ R

 \Box

$$
\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]
$$

Similarly
$$
\mathbb{E}[\lambda_1 X_1, + \dots + \lambda_n X_n] = \lambda_1 \mathbb{E}[X_1] + \dots + \lambda_n \mathbb{E}[X_n]^d
$$

^aholds for countably infinite collection though proof is omitted until more analysis experience.

Note. Independence is *NOT* a condition.

Proof. If Ω is countable:

$$
\mathbb{E}[\lambda X + \mu Y] = \sum_{\substack{\underline{z} \in \text{Im}(\lambda X + \mu Y) \\ \omega \in \Omega}} \underline{z \mathbb{P}(\lambda X + \mu Y \equiv z)} \text{ awkward}
$$

$$
= \sum_{\omega \in \Omega} (\lambda X(\omega) + \mu Y(\omega)) \mathbb{P}(\{\omega\})
$$

$$
= \lambda \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) + \mu \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\{\omega\})
$$

$$
= \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y].
$$

Aside - Special Cases

- 1. If $\lambda, c \in \mathbb{R}$ then:
	- a) $\mathbb{E}[X + c] = \mathbb{E}[X] + c$
	- b) $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$
- 2. a) *X*, *Y* random variables (both integrable) on same probability space. $\mathbb{E}[X +$ Y] = $\mathbb{E}[X]$ + $\mathbb{E}[Y]$.
	- b) in fact $\lambda, \mu \in \mathbb{R} \mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]$ (similarly $\mathbb{E}[\lambda_1, X_1, + \cdots +$ $\lambda_n X_n$] = $\lambda_1 \mathbb{E}[X_1] + \cdots + \lambda_n \mathbb{E}[X_n]$)

Corollary 4.1

 $X \geq Y^a$ then $\mathbb{E}[X] \geq \mathbb{E}[Y]$. $\overline{Y^{\alpha}X(\omega) \geq Y(\omega)} \quad \forall \omega \in \Omega$

Proof.

$$
X = (X - Y) + Y
$$

\n
$$
\mathbb{E}[X] = \mathbb{E}[X - Y] + \mathbb{E}[Y]
$$

\n
$$
X - Y \ge 0 \implies \mathbb{E}[X - Y] \ge 0 \text{ by Proposition 4.1.}
$$

 \Box

 \Box

Example 4.12 (Counting Problems)

 $(\sigma(1), \ldots, \sigma(n))$ uniform on Σ_n . $Z = |\{i : \sigma(i) = i\}|$ = number of fixed points. Let $A_i = \{\sigma(i) = i\}$, recall from Example 3.4 A_i s *not* independent.

Key step:

$$
Z = 1_{A_1} + \dots + 1_{A_n}
$$

\n
$$
\mathbb{E}[Z] = \mathbb{E}[1_{A_1} + \dots + 1_{A_n}]
$$

\n
$$
= \mathbb{E}[1_{A_1}] + \dots + \mathbb{E}[1_{A_n}] \text{ by Linearity of expectation}
$$

\n
$$
= \mathbb{P}(A_1) + \dots + \mathbb{P}(A_n) \text{ by Example 4.11}
$$

\n
$$
= \frac{1}{n}n = 1.
$$

Note. Same answer as $\text{Bin}(n, \frac{1}{n})$

Proposition 4.3

If *X* takes values in *{*0*,* 1*,* 2*, . . . }* then

$$
\mathbb{E}[X] = \sum_{k \ge 1} \mathbb{P}(X \ge k)
$$

Proof. One can carefully re-arrange the summands which is left as an exercise to the reader. \Box

Alternative. Write $X = \sum_{k \geq 1} 1_{X \geq k}^a$ then take $\mathbb{E}[X]$:

$$
\mathbb{E}[X] = \mathbb{E}\left[\sum 1_{X \ge k}\right] \\
= \sum \mathbb{E}[1_{X \ge k}] \\
= \sum \mathbb{P}(X \ge k)
$$

 \Box

*a*Sanity check: let *X* = 7, $1_{X \ge 1} = \cdots = 1_{X \ge 7} = 1$ whilst $1_{X \ge 8} = 1_{X \ge 9} = \cdots = 0$.

Claim 4.2 (Markov's Inequality)

Let *X* ≥ 0 be a random variable. Then \forall *a* > 0:

$$
\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}
$$

The LHS is interesting, e.g. if we want to bound the probability of an extreme outcome, whilst the RHS is easy to study.
Note. Is $a = \frac{\mathbb{E}[X]}{2}$ $\frac{[A]}{2}$ useful? No, we already know probabilities are less than 2. If *a* is large it might be useful

Proof. Observe $X \ge a \mathbb{1}_{X \ge a^a}$ and take $\mathbb E$

$$
\mathbb{E}[X] \ge a \mathbb{E}[1_{X \ge a}]
$$

= $a \mathbb{P}(X \ge a)$

 \Box

 \Box

 a Check: If *X* \in [0*, a*) then RHS = 0 else RHS = *a*.

Note. Markov's Inequality is also true for continuous RVs.

§4.2.1 Studying $\mathbb{E}[f(X)]$

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Then $f(X)$ is also a *random variable*³.

Claim 4.3

$$
\mathbb{E}[f(X)] = \sum_{x \in \text{Im}(X)} f(x)\mathbb{P}(X = x)^{a}.
$$

a if it exists

Proof. Let $A = \text{Im}(f(x)) = \{f(x) : x \in \text{Im}(X)\}\)$. Starting with RHS

$$
\sum_{x \in \text{Im}(X)} f(x) \mathbb{P}(X = x) = \sum_{y \in A} \sum_{\substack{x \in \text{Im}(X) \\ f(x) = y}} f(x) \mathbb{P}(X = x)
$$

$$
= \sum_{y \in A} y \sum_{\substack{x \in \text{Im}(X) \\ f(x) = y}} \mathbb{P}(X = x)
$$

$$
= \sum_{y \in A} y \mathbb{P}(f(X) = y) \text{ by additivity}
$$

$$
= \mathbb{E}[f(X)]
$$

 ${}^{3}X$: $\Omega \to \mathbb{R}$ so $f(X)$: $\Omega \to \mathbb{R}$.

§4.3 Variance

Motivation

$$
U_n \sim \text{Uniform}(\{-n, -n+1, \dots, n\})
$$

\n
$$
V_n \sim \text{Uniform}(\{-n, n\})
$$

\n
$$
Z_n = 0
$$

\n
$$
S_n = \text{random walk for } n \text{ steps}
$$

\n
$$
\sim n - 2 \text{Bin}\left(n, \frac{1}{2}\right)
$$

All of these have $\mathbb{E} = 0$.

Variance is a way to "measure how concentrated a RV is around its mean".

Definition 4.9

The **variance** of *X* is:

$$
\text{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]
$$

Proposition 4.4

 $Var(X) ≥ 0$ with equality $\iff \mathbb{P}(X = \mathbb{E}[X]) = 1$ (as $(X - \mathbb{E}[X])^2$ so by Proposition 4.1).

Defi[niti](#page-33-0)on 4.10 (Alternative characterisation)

$$
\text{Var}(X) = \mathbb{E}\left[X^2\right] - (\mathbb{E}[X])^2 \quad (\ge 0)
$$

Proof. Write $\mu = \mathbb{E}[X]$

$$
\begin{aligned} \text{Var}(X) &= \mathbb{E}\left[(X - \mu)^2 \right] \\ &= \mathbb{E}\left[X^2 - 2\mu X + \mu^2 \right] \\ &= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 \\ &= \mathbb{E}[X^2] - \mu^2 \end{aligned}
$$

 \Box

Proposition 4.5 (Properties)

If $\lambda, c \in \mathbb{R}$

- $\text{Var}(\lambda X) = \lambda^2 \text{Var}(X).$
- $Var(X + c) = Var(X)$

Proof.

$$
\mathbb{E}[X + c] = \mu + c
$$

Var(X + c) = $\mathbb{E}\left[\left(X + c - (\mu + c)^2\right)\right]$
= $\mathbb{E}\left[(X - \mu)^2\right]$
= Var(X).

Example 4.13 (Poisson Distribution) Let *X* \sim Poisson(λ)

$$
\text{Var}(X) = \mathbb{E}[X^2] - \lambda^2
$$

"Falling factorial trick": sometimes easier to calculate $\mathbb{E}[X(X-1)]$ than $\mathbb{E}[X^2]$

$$
\mathbb{E}[X(X-1)] = \sum_{k\geq 2} \frac{k(k-1)e^{-\lambda} \frac{\lambda^k}{k!}}{\text{function}} \n= \lambda^2 e^{-\lambda} \sum_{k\geq 2} \frac{\lambda^{k-1}}{(k-2)!} \n= \lambda^2 \n\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X] \n= \lambda^2 + \lambda \n\text{Var}(X) = \lambda
$$

Example 4.14 (Geometric Distribution)

 \Box

Let *Y* ∼ Geom (p) where *Y* \in N.

$$
\mathbb{E}[Y] = \frac{1}{p}, \text{Var}(Y) = \frac{1-p}{p^2}.
$$

Proof left as an exercise.

Note. λ large: $Var(x) = \mathbb{E}[X]$, more concentrated *p* small: $Var(Y) \approx \frac{1}{n^2}$ $\frac{1}{p^2} = (\mathbb{E}[X])^2.$

Example 4.15 (Bernouli Distribution) Let *X* \sim Bern(*p*).

$$
\mathbb{E}[X] = 1 \times p = p
$$

$$
\mathbb{E}[X^2] = 1^2 \times p = p
$$

$$
\text{Var}(X) = p - p^2
$$

$$
= p(1 - p)
$$

Example 4.16 (Binomial Distribution) Let *X ∼* Bin(*n, p*)

$$
\mathbb{E}[X] = np
$$

$$
\mathbb{E}\left[X^2\right] = \text{ugly}
$$

§4.3.1 Sums of RVs

Goal: Study $\text{Var}(X_1 + \cdots + X_n)$. Do the X_i s need to be independent.

Proposition 4.6 (Preliminary: Expectation of Product of RVs) If *X*, *Y* are independent RVs and *f*, *g* are functions $\mathbb{R} \to \mathbb{R}$. Then: $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$ "Splits as a product".

Example 4.17 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ **Example 4.18** Let $f(x) = g(x) = z^x$ (or e^{tx}).

Proof. (X, Y discrete)

LHS =
$$
\sum_{x,y \in \text{Im}} f(x)g(y)\mathbb{P}(X = x, Y = y)
$$

=
$$
\sum_{x,y \in \text{Im}} f(x)g(y)\mathbb{P}(X = x)\mathbb{P}(Y = y)
$$

=
$$
\left[\sum_{x \in \text{Im}} f(x)\mathbb{P}(X = x)\right] \left[\sum_{y \in \text{Im}} g(x)\mathbb{P}(Y = y)\right]
$$

=
$$
\mathbb{E}[f(X)]\mathbb{E}[g(Y)]
$$

 \Box

Proposition 4.7 (Sums of independent RVs) Let X_1, \ldots, X_n be <u>independent</u>. Then

$$
Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n)
$$

Proof. (Suffices to Prove (STP)
$$
n = 2
$$
). Say $\mathbb{E}[X] = \mu$, $\mathbb{E}[Y] = \nu$
\n
$$
\text{Var}(X + Y) = \mathbb{E}\left[(X + Y - \mu - \nu)^2 \right]
$$
\n
$$
= \mathbb{E}\left[(X - \mu)^2 \right] + \mathbb{E}\left[(Y - \nu)^2 \right] + 2\mathbb{E}[(X - \mu)(Y - \nu)].
$$
\n
$$
= \text{Var}(X) + \text{Var}(Y) + 2\mathbb{E}[X - \mu]\mathbb{E}[Y - \nu]
$$
\n
$$
= \text{Var}(X) + \text{Var}(Y).
$$

Example 4.19 (Binomial)

Going back to Binomial Distribution, $Var(Bin(n, p)) = np(1 - p)$.

Goal: Study $Var(X + Y)$ when *X*, *Y* not independent.

Definition 4.11 [\(Covariance\)](#page-39-0)

Let *X, Y* be two RVs. Their **covariance** is

 $Cov(X, Y) = \mathbb{E} [(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

"Measures how dependent *X*, *Y* are and in which <u>direction</u>" (*X* large \implies *Y* larger if $Cov > 0$ else Y smaller).

Proposition 4.8 (Properties)

 $Cov(X, Y) = Cov(Y, X)$ $Cov(X, X) = Var(X)$

Definition 4.12 (Alternative Characterisation)

$$
Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]
$$

Proof.

$$
Cov(X, Y) = \mathbb{E} [(X - \mu)(Y - \nu)]
$$

= $\mathbb{E}[XY] - \mu \mathbb{E}[Y] - \nu \mathbb{E}[X] + \mu \nu$
= $\mathbb{E}[XY] - \mu \nu$.

 \Box

$$
Cov(\lambda, X) = 0
$$

\n
$$
Cov(X + \lambda, Y) = Cov(X, Y)
$$

\n
$$
Cov(\lambda X, Y) = \lambda Cov(X, Y)
$$

\n
$$
Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
$$

Covariance is <u>linear</u> in each argument i.e. $Cov(\sum \lambda_i X_i, Y) = \sum \lambda_i Cov(X_i, Y)$ and $Cov(\sum \lambda_i X_i, \sum \mu_j Y_j) = \sum_{i=1}^n \sum_{j=1}^m \lambda_i \mu_j Cov(X_i, Y_j).$

Proposition 4.10 (Sums of RVs)

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i\right)
$$

$$
= \sum_{i=1}^{n} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)^a
$$

 a^a or $2\sum_{i$

Proposition 4.11

X, Y independent \implies Cov(*X, Y*) = 0, the converse is false.

Example 4.20

Let $Y = -X$, $Var(Y) = Var(X)$. So $Var(X + Y) = Var(0) = 0 \neq Var(X) + Var(Y)$.

Example 4.21 (Uniform Permutation)

Let $(\sigma(1), \ldots, \sigma(n))$ be uniformly chosen on Σ_n . Let $A_i = {\sigma(i) = i}$ and $N = 1_{A_1} + \cdots + 1_{A_n}$ (*N* is the number of fixed points).

$$
\mathbb{E}[N] = n \times \frac{1}{n} = 1
$$

Aⁱ and *A^j* are *not* independent

$$
\begin{aligned} \text{Var}(1_{A_1}) &= \frac{1}{n} \left(1 - \frac{1}{n} \right) \\ \text{Cov}(1_{A_i}, 1_{A_j}) &= \mathbb{E}[1_{A_i} 1_{A_j}] - \mathbb{E}[1_{A_i}] \mathbb{E}[1_{A_j}] \\ &= \mathbb{E}[1_{A_i \cap A_j}] - \mathbb{E}[1_{A_i}] \mathbb{E}[1_{A_j}] \\ &= \mathbb{P}(A_i \cap A_j) - \mathbb{P}(A_i) \mathbb{P}(A_j) \\ &= \frac{1}{n(n-1)} - \frac{1}{n} \times \frac{1}{n} \\ &= \frac{1}{n^2(n-1)} > 0 \end{aligned}
$$

Note: Cov doesn't depend on *i, j*

$$
Var(N) = \sum_{i=1}^{n} Var(1_{A_i}) + \sum_{i \neq j} Cov(1_{A_i}, 1_{A_j})
$$

$$
= n \times n \left(1 - \frac{1}{n} \right) + n(n-1) \times \frac{1}{n^2(n-1)}
$$

= $1 - \frac{1}{n} + \frac{1}{n}$
= 1.

Compare with Bin $\left(n,\frac{1}{n}\right)$: $\mathbb{E} = 1$, $\text{Var} = n \times \frac{1}{n}$ $\frac{1}{n}\left(1-\frac{1}{n}\right)$ $\frac{1}{n}$) = 1 *−* $\frac{1}{n}$ $\frac{1}{n}$.

§4.3.2 Chebyshev's Inequality

Proposition 4.12 (Chebyshev's Inequality) Let *X* be a RV, $\mathbb{E}[X] = \mu$ finite, $\text{Var}(X) = \sigma^2 < \infty$.

$$
\mathbb{P}(|X - \mu| \ge \lambda) \le \frac{\text{Var}(X)}{\lambda^2}
$$

Remember the proof, not the statement.

Proof. Idea: Apply Markov's Inequality to $(X - \mu)^2$.

$$
\mathbb{P}\left((X-\mu)^2 \ge \lambda^2\right) \le \frac{\mathbb{E}\left[(X-\mu)^2\right]}{\lambda^2}
$$

$$
= \frac{\text{Var}(X)}{\lambda^2}
$$

 \Box

Danger: Applying Markov's Inequality to $|X - \mu|$, $\mathbb{E}[|X - \mu|]$ is less nice than $\mathbb{E}[(X-\mu)^2].$

Comments

- Chebyshev's I[nequality gives better](#page-35-0) bounds than Markov's Inequality (decays with λ^2 instead of λ).
- We can apply it to all RVs, not just those ≥ 0 .
- Caveat: We need $\text{Var}(X) < \infty$ which is a stronger condition than $\mathbb{E}[X] < \infty$.

Definition 4.13 (Standard Deviation) $\sqrt{\text{Var}(X)}$ is the **standard deviation**, σ , of X.

It has the same "units" as *X* but not many nice properties so Varis generally preferred. We can rewrite Chebyshev as $\mathbb{P}(|X - \mu| \geq k\sigma) \leq 1/k^2$

§4.4 Conditional Expectation

Setting: $(\Omega, \mathcal{F}, \mathbb{P})$.

Recall the definition of Conditional Probability.

Definition 4.14 (Conditional Expectation)

B \in *F* with $\mathbb{P}(B)$ > 0, *X* a RV. The **[condition](#page-19-0)al expectation** is

$$
\mathbb{E}[X \mid B] = \frac{\mathbb{E}[X1_B]}{\mathbb{P}(B)}
$$

Example 4.22 (Uniform Dice)

Let *X* be a dice, uniform on $\{1, \ldots, 6\}$.

$$
\mathbb{E}[X \mid X \text{ prime}] = \frac{\frac{1}{6}[0+2+3+0+5+0]}{\frac{1}{2}}
$$

$$
= \frac{1}{3}(2+3+5)
$$

$$
= \frac{10}{3}.
$$

Definition 4.15 (Alternative Characterisation)

$$
\mathbb{E}[X \mid B] = \sum_{x \in \text{Im } X} x \mathbb{P}(X = x \mid B).
$$

Proof.

RHS =
$$
\sum \frac{x \mathbb{P}(\lbrace X = x \rbrace \cap B)}{\mathbb{P}(B)}
$$

$$
= \sum_{\substack{x \neq 0 \\ x \in \text{Im } X}} \frac{x \mathbb{P}(X1_B = x)}{\mathbb{P}(B)}
$$

Note:
$$
\mathbb{E}[X1_B] = \sum_{\substack{x \neq 0 \\ x \in \text{Im } X}} x \mathbb{P}(X1_B = x)
$$

 \Box

Proposition 4.13 (Law of Total Expectation)

Let (B_1, B_2, \ldots) be a finite or countably-infinite partition of Ω with $B_n \in \mathcal{F} \quad \forall n \text{ s.t.}$ $\mathbb{P}(B_n) > 0$. *X* a RV.

$$
\mathbb{E}[X] = \sum_{n} \mathbb{E}[X \mid B_n] \mathbb{P}(B_n).
$$

Example 4.23

Let $X = 1_A$ we recover the Law of Total Probability.

Proof.
\nRHS =
$$
\sum_{n} \mathbb{E}[X1_{B_n}]
$$

\n= $\mathbb{E}[X \cdot (1_{B_1} + \cdots + 1_{B_n})]$ by Linearity of expectation
\n= $\mathbb{E}[X \cdot 1]$
\n= $\mathbb{E}[X]$.

Application: Two stage randomness where (*Bn*) describes what happens in stage 1.

 \Box

Example 4.24 (Sums of random number of terms)

Let $(X_n)_{n\geq 1}$ be IID and $N \in \{0, 1, 2, \dots\}$ be a random index independent of (X_n) . $S_n = X_1 + \cdots + X_n$ with $\mathbb{E}[X_n] = \mu$ so $\mathbb{E}[S_n] = n\mu$. Then

$$
\mathbb{E}[S_N] = \sum_{n\geq 0} \mathbb{E}[S_N \mid N = n] \mathbb{P}(N = n)
$$

$$
= \sum_{n\geq 0} \mathbb{E}[S_n] \mathbb{P}(N = n)^a
$$

$$
= \sum_{n\geq 0} n\mu \mathbb{P}(N = n)
$$

$$
= \mu \mathbb{E}[N].
$$

^{*a*}KEY STEP $\mathbb{E}[S_N | N = n] = \mathbb{E}[S_n | N = n] = \mathbb{E}[S_n]$ last step follows as S_n and $\{N = n\}$ are independent.

§4.5 Random Walks

Definition 4.16 (Random Walk)

Let $(X_n)_{n\geq 1}$ be IID RVs then $S_n = x_0 + X_1 + \cdots + X_n$. (S_0, S_1, S_2, \dots) is a random process called a **Random Walk** started from *x*0.

§4.5.1 Simple Random Walk (SRW) on Z **- Main example in our course**

Definition 4.17 (Simple Random Walk) A **simple random walk** has $P(X_i = +1) = p$ and $P(X = -1) = q = 1 - p$. $x_0 \in \mathbb{Z}$ and is often 0. It is "symmetric" in the special case where $p = q = \frac{1}{2}$ $\frac{1}{2}$.

Example 4.25 $\mathbb{P}(S_2 = x_0) = pq + qp = 2pq$

Useful interpretation: A gamble repeatedly plays a game where he wins $\pounds 1$ with $\mathbb{P} = p$, loses $\pounds 1$ with $\mathbb{P} = q$. Often: stops at *£*0.

Question

Suppose the gambler starts with $\mathcal{L}x$ at time 0. What is the probability he reaches *£a* before *£*0. (0 *< x < a*)

Notation. $\mathbb{P}_x(\cdot) = \mathbb{P}(\cdot | x_0 = x)$ "measure of RW started from x_0 ."

Answer

Key idea: Conditional on $S_1 = z$, (S_1, S_2, \ldots) is a random walk started from *z*. Apply Law of Total Probability

Interpret this.
$\mathbb{P}_x(S \text{ hits a before } 0) = \sum_{z} a \mathbb{P}_x(S \text{ hits a before } 0 \mid S_1 = z) \mathbb{P}_x(S_1 = z)$
$= \sum_{z} \mathbb{P}_z(S \text{ hits a before } 0) \mathbb{P}_x(S_1 = z)$
let $h_x = \mathbb{P}_x(S \text{ hits a before } 0)$.
$S_1 = x \pm 1$
$h_x = p h_{x+1} + q h_{x-1}$.

Important to specify boundary conditions: $h_0 = 0$, $h_a = 1$

Solving Linear Recurrence Equations

 $ph_{x+1} - h_x + qh_{x-1} = 0$ is a homogenous equation whose solutions form a vector space. We want to find two LI solutions and we guess $h_x = \lambda^x$ So

$$
p\lambda^{x+1} - \lambda^x + q\lambda^{x-1} = 0
$$

$$
p\lambda^2 - \lambda + q = 0
$$

$$
\lambda = 1, \frac{q}{p}
$$

Case $q \neq p$

$$
h_x = A + B\left(\frac{q}{p}\right)^x
$$

Use BCs to find A,B:

$$
x = 0 : h_0 = 0 = A + B
$$

$$
x = a : h_a = 1 = A + B \left(\frac{q}{p}\right)^a
$$

$$
h_x = \frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}.
$$

Case $p = q = \frac{1}{2}$ $\frac{1}{2}$: Note $h_x = x$, "*x* is the average of $x + 1$ and $x - 1$ ". General solution: $h_x = A + Bx$

$$
h_0 = 0 = A
$$

\n
$$
h_a = 1 = Ba
$$

\n
$$
h_x = \frac{x}{a}
$$

 a^a Subscript: $z \in \text{Im}(S_1)$ but we will not bother with that any more

Probability sanity check: $p = q = \frac{1}{2}$ $\frac{1}{2}$. "Fair game" Study: Expected profit if you start from *£x* and play until time *T*.

$$
\mathbb{E}_x[S_T] = a \mathbb{P}_x(S_T = a) + 0 \times \mathbb{P}_x(S_T = 0)
$$

$$
= ah_x = x
$$

Fits our intuition for fair games. ✓

Question

Suppose the gambler starts with *£x* at time 0. What is the expected absorption time, $T = \min\{n \ge 0 : S_n = 0 \text{ or } S_n = a\}$. "first time *S* hits $\{0, a\}$ "

Answer

Apply Law of Total Expectation

We want $\mathbb{E}_x[T]$ ($\mathbb{E}[T]$ when we start from *x*) which we label as τ_x

$$
\tau_x = \mathbb{E}_x[T]
$$

\n
$$
= p \mathbb{E}_x[T \mid S_1 = x + 1]^a + q \mathbb{E}_x[T \mid S_1 = x - 1]
$$

\n
$$
= p \mathbb{E}_{x+1}[T+1] + q \mathbb{E}_{x-1}[T-1]
$$

\n
$$
= p(1 + \mathbb{E}_{x+1}[T]) + q(1 + \mathbb{E}_{x-1}[T])
$$

\n
$$
= 1 + p\tau_{x+1} + q\tau_{x-1}
$$

Boundary conditions: $\tau_0 = \tau_a = 0$ "We're already there".

We already solved the homogenous case of this equation previously. We want to find a *particular solution*, guess: "one level more complicated than general solution"

 $\frac{p \neq q}{q}$: Guess: $\tau_x = \frac{x}{q-p}$ works as a particular solution $p = q = \frac{1}{2}$ $\frac{1}{2}$: Guess $\tau_x = Cx^2$ *might* work

Sub in:
$$
\frac{C}{2}(x+1)^2 - Cx^2 + \frac{C}{2}(x-1)^2 = -1
$$

$$
C = -1
$$

$$
\tau_x = A + Bx - x^2
$$

$$
\tau_0 = \tau_a = 0 \text{ and } \tau_x \ge 0
$$

$$
\therefore \tau_x = x(a-x)
$$

 a^a ^a As if we started from $(x + 1)$ and incremented time by one unit."

§4.5.2 Unbounded RW: "Gambler's Ruin'

$$
\mathbb{P}_x(\text{hit } 0) = \lim_{a \to \infty} \mathbb{P}_x(\text{hit } 0 \text{ before } a)
$$

$$
= \lim_{a \to \infty} 1 - h_x
$$

Key conclusion: T_x (time to hit 0 from *x*) is for $p = \frac{1}{2}$ $\frac{1}{2}$ finite with probability 1 and has infinite expectation.

Comment (non - examinable)

Alternative derivation of $\mathbb{E}[T_1] = \infty$. $\mathbb{E}[T_2] = 2\mathbb{E}[T_1]$ as going from $2 \to 1$ is the same as going from $1 \to 0$.

$$
\mathbb{E}[T_1] = \frac{1}{2} \times 1 + \frac{1}{2} (1 + \mathbb{E}[T_2])
$$

= 1 + \mathbb{E}[T_1]

We conclude that $\mathbb{E}[T_1] = \infty$. insertpicture

§4.6 Generating Functions

Definition 4.18 (Probability Generating Function)

Let *X* be a RV taking values in $\{0, 1, 2, \ldots\}$. The **probability generating function** of *X* is

$$
G_X(z) = \mathbb{E}\left[z^X\right] = \sum_{k \ge 0} z^k \mathbb{P}(X = k).
$$

Analytic comment: G_X : $(-1, 1) \rightarrow \mathbb{R}$.

Idea: "A pgf *encodes* the distribution of *X* as a function with nice analytic properties."

Example 4.26 (Bernoulli) Let $X \sim \text{Bern}(p)$

$$
G_X(z) = z^0 \mathbb{P}(X = 0) + z \mathbb{P}(X = 1) = (1 - p) + pz.
$$

Example 4.27 (Poisson) Let $X \sim \mathrm{Poi}(\lambda)$

$$
G_X(z) = \sum_{k\geq 0} z^k e^{-\lambda} \frac{\lambda^k}{k!}
$$

$$
= e^{-\lambda} \sum_{k\geq 0} \frac{(\lambda z)^k}{k!}
$$

$$
= e^{-\lambda} e^{\lambda z}
$$

$$
= e^{\lambda (z-1)}
$$

Note. $G_X(0) = 0^0 \mathbb{P}(X = 0) = \mathbb{P}(X = 0)$.

Proposition 4.14 (Recovering PMF from PGF) $\mathbb{P}(X = n) = \frac{1}{n!} G_X^{(n)}(0)$

Proof. Idea: Differentiate *n* times

$$
\frac{d^n}{dz^n}G_X(z) = \sum_{k\geq 0} \frac{d^n}{dz^n}(z^k)\mathbb{P}(X = k)
$$

$$
= \sum_{k\geq 0} \frac{k!}{(k-n)!}z^{k-n}\mathbb{P}(X = k)
$$

$$
= \sum_{k\geq n} \frac{k!}{(k-n)!}z^{k-n}\mathbb{P}(X = k)
$$

$$
= \sum_{l\geq 0} \frac{(l+n)!}{l!}z^l\mathbb{P}(X = l+n)
$$

$$
\frac{d^n}{dz^n}G_X(0) = n!\mathbb{P}(X = n).
$$

 \Box

Key fact: PGF *determines* PMF/distribution exactly.

Note. $G_X(1)^4 = \sum_{k \geq 0} \mathbb{P}(X = k) = 1$.

Proposition 4.15 (Recoving other probablistic qunatities)

$$
G_X^{(n)}(1) = \mathbb{E}[X(X-1)\dots(X-n+1)]
$$

Falling Factorial.

]

Proof.

$$
G_X^{(n)}(1) = \sum_{k \ge n} k(k-1) \dots (k-n+1) \mathbb{P}(X = k)
$$

= $\mathbb{E}[X(X-1) \dots (X-n+1)]$

 \Box

 \Box

Proposition 4.16 (Variance in terms of pgf)

$$
Var(X) = G''_X(1) + G'_X(1) - [G'_X(1)]^2
$$

Proof.

$$
\mathbb{E}\left[X^2\right] = \mathbb{E}[X(X-1)] + \mathbb{E}[X]
$$

$$
= G''_X(1) + G'_X(1)
$$

Idea: Find general $\mathbb{E}[P(X)]$ ($P(X)$) is a polynomial) using $\mathbb{E}[$ falling factorials of *X*].

Linear Algebra aside

The falling factorials $1, X, X(X - 1), \ldots$ form a *basis* for $\mathbb{R}[X]$ (vector space of polynomials).

Proposition 4.17 (PGF for sum of independent RVs)

⁴Technical Comment: $G_X(1)$ means $\lim_{z \uparrow 1} G_X(z)$ if the domain is $(-1,1)$. In particular $G'_x(1)$ is possible

Let X_1, \ldots, X_n be independent RVs with pgfs G_{X_1}, \ldots, G_{X_n} . Let $X = X_1 + \cdots + X_n$.

$$
G_X(z) = G_{X_1}(z) \dots G_{X_n}(z)
$$

Special case: X_i are IID, $G_X(z) = (G_{X_1}(z))^n$. Much nicer than PMF of $X!$

Proof.

$$
G_X(z) = \mathbb{E}\left[z^X\right]
$$

= $\mathbb{E}\left[z^{X_1+\dots X_N}\right]$
= $\mathbb{E}\left[\underset{\substack{z \text{ function} \\ \text{of } X_1}}{\sum_{x=1}^{X_1} z^{X_2} \cdots \underset{\substack{z \text{ function} \\ \text{of } X_n}}{\sum_{x=1}^{X_n} z^{X_n}}\right]$
= $\mathbb{E}\left[z^{X_1}\right] \cdots \mathbb{E}\left[z^{X_n}\right]$ as X_i are independent so by Proposition 4.6
= $G_{X_1}(z) \dots G_{X_n}(z)$.

 \Box

Example 4.28 (Binomial) Let $X \sim Bin(n, p)$

$$
X = X_1 + \dots + X_n, \quad X_i
$$
 IID Bern (p)

$$
G_X(z) = (1 - p + pz)^n.
$$

Example 4.29 (Q6, Sheet 3) Let *X* \sim Poi(λ) and *Y* \sim Poi(μ).

$$
G_X(z) = e^{\lambda(z-1)}, G_Y(z) = e^{\mu(z-1)}
$$

Study $Z = X + Y$

$$
G_Z(z) = G_X(z)G_Y(z)
$$

$$
= e^{\lambda(z-1)}e^{\mu(z-1)}
$$

$$
= e^{\lambda+\mu)(z-1)}
$$

PGF of Poi($\lambda + \mu$)

So $X + Y \sim \text{Poi}(\lambda + \mu)$.

Proposition 4.18 (PGF for random sums)

Let X_1, X_2, \ldots be IID with the same distribution as X . X takes values in *{*0*,* 1*,* 2*, . . . , }* and let *N* be a RV taking values in *{*0*,* 1*,* 2*, . . . } independent* of (*Xn*).

$$
G_{X_1+\cdots+X_N}=G_N(G_X(z))
$$

Proof.
\n
$$
\mathbb{E}\left[z^{X_1+\dots X_N}\right] = \sum_{n\geq 0} \mathbb{E}\left[z^{X_1+\dots+X_N} \mid N=n\right] \mathbb{P}(N=n) \text{ by Law of Total Expectation}
$$
\n
$$
= \sum_{n\geq 0} \mathbb{E}\left[z^{X_1+\dots+X_n} \mid N=n\right] \mathbb{P}(N=n) \text{ Replace with conditioning}
$$
\n
$$
= \sum_{n\geq 0} \mathbb{E}\left[z^{X_1+\dots+X_n}\right] \mathbb{P}(N=n) \quad (N, X_i) \text{ independent so get rid of conditioning}
$$
\n
$$
= \sum_{n\geq 0} \mathbb{E}\left[z^{X_1}\right] \dots \mathbb{E}\left[z^{X_n}\right] \mathbb{P}(N=n) \quad (X_i) \text{s independent}
$$
\n
$$
= \sum_{n\geq 0} (G_X(z))^n \mathbb{P}(N=n)
$$
\n
$$
= G_N(G_X(z))
$$

Example 4.30 (Bernoulli - Q7, Sheet 3) Let $X_i \sim \text{Bern}(p)$ and $N \sim \text{Poi}(\lambda)$.

$$
G_{X_i}(z) = (1 - p) + pz
$$

$$
G_N(s) = e^{\lambda(s-1)}
$$

Interpretation: "Poisson thinning" $\sqrt{\text{Poi}(\lambda)}$ misprints, each gets found with $\mathbb{P} = 1 - p''$

$$
Y = X_1 + \dots + X_N
$$

\n
$$
G_Y(z) = G_N(G_{X_i}(z))
$$

\n
$$
= e^{\lambda(1-p+pz-1)}
$$

\n
$$
= \underbrace{e^{\lambda p(z-1)}}_{\text{PGF of Poi}(\lambda p)}
$$

In general the PMF $X_1 + \cdots + X_N$ is horrible whilst $G_N(G_X(z))$ is nice.

§4.7 Branching Process

"Modelling growth of a population"

Definition 4.19 (Random branching tree)

Let *X* be a RV on $\{0, 1, 2, \ldots\}$. There is one individual at generation 0 and each individual has a random number of children with distribution *X*.

Goal:

- Study number of individuals in each generation
- Total population size is it finite or infinite?

Reduction: Let Z_n = be the number of individuals in generation *n*. $Z_0 = 1$, $Z_1 \sim X$, $Z_{n+1} = X_1^{(n)} + \cdots + X_{Z_n}^{(n)}$ where $X_k^{(n)}$ k ^{(*n*})</sub> are IID with distribution *X* and independent of Z_n . " $X_k^{(n)}$ = number of children of kth individual in generation *n*."

Note. If $Z_n = 0 \implies Z_{n+1} = Z_{n+2} = \cdots = 0$.

Theorem 4.1 $\mathbb{E}[Z_n] = (\mathbb{E}[X])^n$

Proof. Z_{n+1} is a random sum so $\mathbb{E}[Z_{n+1}] = \mathbb{E}[X]\mathbb{E}[Z_n]$. By induction the result follows. \Box

Notation. $\mu = \mathbb{E}[X] \implies \mathbb{E}[Z_n] = \mu^n$.

Notation. Let *G* be the PGF of *X* and G_n the PGF of Z_n .

Theorem 4.2 $G_n(z) = G(\ldots G(z) \ldots)^a$.

 a^a Sometimes written as $G^n(z)$, but this is confusing notation so we won't use it

Proof. $G_{n+1}(z) = G_n(G(z))$ $G_{n+1}(z) = G_n(G(z))$ by PGF for random sums and so result follows by induction. \Box

Question

What is the probability the population has goes extinct?

Definition 4.20 (Extinction Probability by generation *n*)

The probability that the population is extinct by generation *n* is $q_n = \mathbb{P}(Z_n = 0)$.

Definition 4.21 (Extinction Probability)

The probability that the population goes extinct is $q = \mathbb{P}(Z_n = 0$ for any $n \ge 1$), i.e. the population size is finite.

Note. $\{Z_n = 0\} \subseteq \{Z_{n+1} = 0\}$ as $Z_n = 0 \implies Z_{n+1} = 0$. Also $\{Z_n = 0 \text{ for any } n \geq 1\}$ $\bigcup_{n\geq 1} \{Z_n = 0\}.$

Theorem 4.3

 $\mathbb{P}(Z_n = 0) \uparrow \mathbb{P}(\bigcup_{n \geq 1} \{Z_n = 0\})^a$, i.e. $q_n \uparrow q$ as $n \to \infty$.

a ↑ is convergence with an increasing sequence.

Proof. By Continuity.

There are 3 cases to consider

- μ < 1 [subcritical](#page-11-0)
- $\mu = 1$ critical
- $\mu > 1$ supercritical

The degenerate case $P(X = 1) = 1$ is boring so we exclude it.

 \Box

Theorem 4.4 $q = 1 \iff \mu = \mathbb{E}[X] \leq 1.$ ^{*a*}

*^a*This does not hold in the degenerate case obviously.

Remark 5*.* Interesting that *q* [d](#page-56-0)epends on *X* only through E[*X*].

Interpretation: Consider a pandemic spreading through a population, obviously it cannot infect infinite people. Instead we take "finite" to mean e.g. 100 people are infected out of a large population and "infinite" might mean the model stops making sense/ a significant positive proportion are infected.

Baby Proof - (Subcritical). $\mathbb{P}(Z_n \geq 1) \leq \frac{\mathbb{E}[Z_n]}{1}$ $\frac{-n_1}{1}$ by Markov's Inequality $=\mu^n \to 0.$

For supercritical case, note $\mathbb{E}[Z_n] \to \infty$ does <u>not</u> [imply](#page-35-0) $\mathbb{P}(Z_n = 0) \nrightarrow 1$.

 \Box

Recall *G* is the PGF of *X* and G_n the PGF of Z_n , $q_n = \mathbb{P}(Z_n = 0) = G_n(0)$ and that *q* is the extinction probability.

Claim 4.4 $G(q) = q$.

Proof 1. $q_{n+1} = G(q_n)$ by Theorem 4.2, $q_n \to q$ and *G* is continuous as it's a power series so $G(q_n) \to G(q)$ so $q = G(q)$ as $n \to \infty$. \Box

Proof 2 - LTP (revision of random su[ms\).](#page-55-1) Conditional on $Z_1 = k$, we get *k* independent branching processes.

The total population is finite \iff all subtrees^{*a*} of 1st generation are finite.

$$
q = \mathbb{P}(\text{finite})
$$

$$
= \sum_{k\geq 0} \mathbb{P}(\text{all finite} \mid Z_1 = k) \mathbb{P}(Z_1 = k)
$$

$$
= \sum_{k\geq 0} [\mathbb{P}(\text{finite})]^k \mathbb{P}(Z_1 = k)
$$

$$
= \sum_{k\geq 0} q^k \mathbb{P}(Z_1 = k)
$$

$$
= G(q).
$$

Facts about G

- $G(0) = \mathbb{P}(X = 0) \ge 0$
- $G(1) = 1$
- $G'(1) = \mathbb{E}[X] = \mu$.
- *G* is <u>smooth</u>, all derivatives ≥ 0 on $[0, 1)$ as all coefficients of the power series are non-negative.

In the 2nd graph, the gradient is > 1 so there is only one solution on [0, 1) by IVT on $G(z) - z$. \Box

*^a*Each subtree has the same distribution as the original tree.

Theorem 4.5

q, the extinction probability, is the <u>minimal</u> solution to $z = G(z)$ in $[0, 1]$.

 a Assuming $\mathbb{P}(X = 1) \neq 1$.

Corollary 4.2 *q* = 1 \iff *µ* ≤ 1 *Proof.* Let *t* be the minimal solution to $t = G(t)$. Reminder: *G* is increasing.

$$
t \geq 0
$$

\n
$$
\implies G(t) \geq G(0)
$$

\n
$$
\implies G(G(t)) \geq G(G(0))
$$

\n
$$
\implies G(\dots G(t) \dots) \geq G(\dots G(0) \dots)
$$

\n
$$
t \geq q_n
$$

\n
$$
t \geq q \text{ as } n \to \infty.
$$

q is a solution by Claim 4.4 and is bounded above by the minimal solution so *t* = q . *q*.

§5 Continuous Probability

We will focus on the case where $\text{Im}(X)$ is an <u>interval</u> in \mathbb{R} . Why?

- Natural for measuring physical quantities, proportions …
- "Limits" of discrete RV.
- Calculus tools for nice calculations.

Definition 5.1 (Random Variable - Redefintion) A **random variable** *X* on $(\Omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ s.t. $\{X \le x\} \in \mathcal{F}$.

This is consistent with the previous definition when Ω is countable (or $\text{Im}(X)$ is countable).

Drawback: We cannot take $\mathcal{F} = \mathcal{P}(\mathbb{R})$.

Definition 5.2 (Cumulative Distribution Function) The **cdf** of RV *X* is

$$
F_X : \mathbb{R} \to [0, 1]
$$

$$
F_X(x) = \mathbb{P}(X \le x).
$$

Example 5.1 (A 6-sided dice) insertpicture

§5.1 Properties of CDF

Claim 5.1 *FX* increasing i.e. $x \leq y \implies F_X(x) \leq F_y(y)$.

Proof. $F_X(x) = \mathbb{P}(X \le x) \le \mathbb{P}(X \le y) = F_X(y).$

Claim 5.2 $\mathbb{P}(X > x) = 1 - F_X(x)$ \Box

Claim 5.3 $\mathbb{P}(a < X \leq b) = F_X(b) - F_X(a)$

Proof (Not Lectured).

$$
\mathbb{P}(a < X \le b) = \mathbb{P}\left(\{a < X\} \cap \{X \le b\}\right) \\
= \mathbb{P}(X \le b) - \mathbb{P}\left(\{X \le b\} \cap \{X \le a\}\right) \\
= \mathbb{P}(X \le b) - \mathbb{P}(X \le a)
$$

Claim 5.4

F^{*X*} is right-continuous and the left limit exists, i.e. $\lim_{y \downarrow x} F_X(y) = F_X(x)$ and $\lim_{y \uparrow x} F_X(y) = F_X(x-) = \mathbb{P}(X < x).$

Proof - Right Continuous. STP $F_X(x + \frac{1}{n})$ $\left(\frac{1}{n}\right) \to F_X(x)$ as $n \to \infty$. Let $A_n = \{x < X \leq x + \frac{1}{n}\}$ $\frac{1}{n}$ }. Then (A_n) are decreasing events and $\bigcap_n A_n = \varnothing$. So $\mathbb{P}(A_n) = F_X(x + \frac{1}{n})$ $\frac{1}{n}$ $\Big) - F_X(x)$ and $\mathbb{P}(A_n) \to \mathbb{P}(\varnothing) = 0.$ \Box

Proof - Left Limits. $F_X(x - \frac{1}{n})$ $\left(\frac{1}{n}\right)$ is an increasing sequence bounded above by $F_X(x).$ Consider $B_n = \left\{ X \leq x - \frac{1}{n} \right\}$ $\left\{\frac{1}{n}\right\}$ then (B_n) increasing and $\bigcup_n B_n = \{X < x\}$. So $F_X(x-\frac{1}{n})$ $\left(\frac{1}{n}\right) = \mathbb{P}(B_n) \to \mathbb{P}(X < x).$ \Box

Claim 5.5

lim_{*x*→∞} $F_X = 1$, lim_{*x*→−∞} $F_X = 0$.

Proof. Let $A_n = X \le n$, so (A_n) are increasing events and $\bigcup_n A_n = \Omega$. So $F_X(n) =$ $\mathbb{P}(X \leq n) \to \mathbb{P}(\Omega) = 1$ by Continuity.

Similar for $\lim_{x\to-\infty} F_X = 0$.

 \Box

 \Box

§5.2 Continuous RVs

Definition 5.3 (Continuous RV) A RV is **continuous** if *F* is continuous.

Claim 5.6

If *X* is a continuous RV then $\mathbb{P}(X = x) = 0 \quad \forall x$.

Proof.

$$
F_X(x) = F_X(x-)
$$

\n
$$
\iff \mathbb{P}(X \le x) = \mathbb{P}(X < x) \quad \forall x
$$

\n
$$
\iff \mathbb{P}(X = x) = 0 \quad \forall x.
$$

 \Box

Note. In this course we assume that *F* is also differentiable so that $F_X(x) = \mathbb{P}(X \leq x)$ R *x −∞ fX*(*u*) *du*.

Definition 5.4 (Probability Density Function) The **pdf** of RV *X* is $f_X : \mathbb{R} \to \mathbb{R}$ with properties

$$
f_X(x) \ge 0 \quad \forall x
$$

$$
\int_{-\infty}^{\infty} f_X(x) dx = 1.
$$

Intuitive meaning

$$
\mathbb{P}(x < X \le x + \delta x) = \int_{x}^{x + \delta x} f_X(u) \, du \approx \delta x \cdot f_X(x)
$$
\n
$$
\mathbb{P}(a < X \le b) = \int_{a}^{b} f_X(x) \, dx
$$
\n
$$
= \mathbb{P}(a \le X < b) \text{ since } \mathbb{P}(X = a) = \mathbb{P}(X = b) = 0.
$$

So for $S \subset \mathbb{R}$, $\mathbb{P}(X \in S) = \int_S f_X(u) du$. (*S* "nice" e.g. interval or countable union of intervals)

Key takeaways:

- The CDF is a collection of probabilities
- The PDF is not a probability. We use them by integrating to get a probability.

Example 5.2 (Uniform Distribution) Let *X* ∼ U[*a*, *b*] where *a*, *b* ∈ R and *a* < *b*.

$$
f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}
$$

$$
F_X(x) = \int_a^x f_X(u) du
$$

$$
= \frac{x-a}{b-a} \text{ for } a \le x \le b.
$$

Question

In what sense is this a "limit of discrete uniform RVs"?

Example 5.3 (Exponential Distribution) Let $X \sim \text{Exp}(\lambda)$ where $\lambda > 0$.

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise} \end{cases}
$$

It is easy to check that $f_X(x)$ is a pdf.

$$
F_X(x) = \mathbb{P}(X \le x)
$$

=
$$
\int_0^x \lambda e^{-\lambda u} du
$$

=
$$
1 - e^{-\lambda x}.
$$

The exponential distribution is the "limit of (rescaled) geometric distribution". It is a good way to model arrival times, "how long to wait before something happens" - link to Poisson usage which will be explored in Part II.

Claim 5.7 (Memoryless property)

(Conditional $\mathbb P$ works as before). Let *X* \sim Exp(λ) and *s*, *t* > 0.

$$
\mathbb{P}(X \ge s + t \mid X \ge s) = \mathbb{P}(X \ge t).
$$

Proof.

$$
\mathbb{P}(X \ge s + t \mid X \ge s) = \frac{\mathbb{P}(X \ge s + t)}{\mathbb{P}(X \ge s)}
$$

$$
= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}
$$

$$
= e^{-\lambda t}
$$

$$
= \mathbb{P}(X \ge t).
$$

 \Box

Note. The only continuous memoryless distribution (with a density) is the exponential distribution.

§5.3 Expectation of Continuous RVs

Definition 5.5 (Expectation) The **expectation** of *X* is $\int_{-\infty}^{\infty} x f_X(x) dx$ and $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$.

a Technical comment: assumes at most one of $\int_{-\infty}^{0} |x| f_X(x) dx$ and $\int_{0}^{\infty} x f_X(x) dx$ is infinite.

Claim 5.8 (Linearity of Expectation) $\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y].$

Claim 5.9 If $X \ge 0$ then $\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) dx$.

Proof.

$$
\mathbb{E}[X] = \int_0^\infty x f_X(x) dx
$$

=
$$
\int_{x=0}^\infty \left(\int_{u=0}^x 1 du \right) f_X(x) dx
$$

=
$$
\int_{u=0}^\infty du \int_{x=u}^\infty f_X(x) dx^a
$$

$$
=\int_{u=0}^\infty du \mathbb{P}(X \ge u)
$$

^{*a*}Consider the region of (u, x) space the second line integrates over and see this is the same as the third line.

§5.4 Variance of Continuous RVs

Definition 5.6 (Variance) $Var(X) = \mathbb{E} [(X - \mathbb{E}[X])^2] = \mathbb{E} [X^2] - (\mathbb{E}[X])^2.$

Claim 5.10 $\text{Var}(aX + b) = a^2 \text{Var}(X).$

Example 5.4 (Uniform Distribution) Let $X \sim U[a, b]$.

$$
\mathbb{E}[X] = \int_a^b x \frac{1}{b-a} dx
$$

\n
$$
= \frac{a+b}{2}
$$

\n
$$
\mathbb{E}[X^2] = \int_a^b x^2 \frac{1}{b-a} dx
$$

\n
$$
= \frac{1}{3} (a^2 + ab + b^2)
$$

\n
$$
\text{Var}(X) = \frac{1}{3} (a^2 + ab + b^2) - (\frac{a+b}{2})^2
$$

\n
$$
= \frac{(b-a)^2}{12}.
$$

Example 5.5 (Exponential Distribution) Let $X \sim \text{Exp}(\lambda)$.

$$
\mathbb{E}[X] = \int_0^\infty x\lambda e^{-\lambda x} dx
$$

= $\left[-xe^{-\lambda x}\right]_0^\infty + \int_0^\infty e^{-\lambda x} dx$

$$
= \frac{1}{\lambda}.
$$

\n
$$
\mathbb{E}[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx
$$

\n
$$
= \left[-x^2 e^{-\lambda x} \right]_0^\infty + 2 \int_0^\infty x e^{-\lambda x} dx
$$

\n
$$
= 0 + \frac{2}{\lambda^2}.
$$

\n
$$
\text{Var}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2}
$$

\n
$$
= \frac{1}{\lambda^2}.
$$

§5.5 Transformations of Continuous RVs

Goal:

- Let $U \sim \text{Unif}[a, b]$ and $\tilde{U} \sim \text{Unif}[0, 1]$. We want to be able to write $U = (b a)\tilde{U} + a$ and carry all calculations over.
- View $g(X)$ as a continuous RV with its own density.

Theorem 5.1

- Let *X* be a continuous RV with density *f*.
- Let $g : \mathbb{R} \to \mathbb{R}$ be continuous s.t.
	- **–** *g* is either strictly increasing or strictly decreasing.

– *g −*1 is differentiable.

Then $g(X)$ is a continuous RV with density

$$
\hat{f}(x) = f(g^{-1}(x)) \cdot \left| \frac{d}{dx} g^{-1}(x) \right| \tag{2}
$$

Remark 6*.*

- Density is? Something to integrate over to get a probability.
- Equation (2) is integration by substitution.
- The following proof uses CDFs (which are probabilities).

Proof. Assum[e](#page-65-0) *g* is strictly increasing, *g* strictly decreasing case is similar.

$$
F_{g(X)}(x) = \mathbb{P}(g(X) \le x)
$$

$$
= \mathbb{P}(X \leq g^{-1}(x))
$$

\n
$$
= F_X(g^{-1}(x))
$$

\n
$$
F'_{g(X)}(x) = F'_X(g^{-1}(x)) \frac{d}{dx} g^{-1}(x)
$$

\n
$$
= f(g^{-1}(x)) \frac{d}{dx} g^{-1}(x).
$$

Sanity check: We've got two expressions for $\mathbb{E}[g(X)]$, $\int_{-\infty}^{\infty} x \hat{f}(x) dx$ and $\int_{-\infty}^{\infty} g(x) f(x) dx$. $(A \text{ssume } \text{Im}(X) = \text{Im}(g(X)) = (-\infty, \infty)).$

$$
\int_{-\infty}^{\infty} x \widehat{f}(x) dx = \int_{-\infty}^{\infty} x f(g^{-1}(x)) \frac{d}{dx} g^{-1}(x) dx.
$$

Substitute: $g^{-1}(x) = u$ so $du = dx \frac{d}{dx} g^{-1}(x)$.

$$
= \int_{-\infty}^{\infty} g(u) f(u) \, du.
$$

Example 5.6 (Exponential Distribution)

• Let $X \sim \text{Exp}(\lambda)$ and $Y = cX$.

$$
\mathbb{P}(Y \le x) = \mathbb{P}\left(X \le \frac{x}{c}\right)
$$

= 1 - e^{-\lambda \frac{x}{c}}
= 1 - e^{-\frac{\lambda}{c}x} - \text{CDF of Exp}\left(\frac{\lambda}{c}\right).

•
$$
\hat{f}(x) = \frac{1}{c} f\left(\frac{x}{c}\right) = \frac{1}{c} \lambda e^{-\lambda x/c} = \frac{\lambda}{c} e^{-\frac{\lambda}{c}x} - \text{PDF of } \exp\left(\frac{\lambda}{c}\right).
$$

Definition 5.7 (The Normal Distribution)

The range is $(-\infty, \infty)$. It has two parameters: $\mu \in (-\infty, \infty)$ and $\sigma^2 \in (0, \infty)$.

$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

Definition 5.8 (Standard Normal)

The **standard normal distribution** is $Z \sim \mathcal{N}(0, 1)^a$ where

$$
f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.
$$

*a*² Sometimes may be referred to as $\varphi(x)$.

Notation. Φ denotes the CDF of *Z*.

Remark 7*.*

- \bullet $\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}$ is a "normalising constant" to ensure $\int f(x) dx = 1$.
- *e −x* ²*/*² has a very rapid decay as *x → ±∞*, this helps ensure that the expected value of $g(\mathcal{N})$ is defined as $\int_0^\infty g()$ is finite.
- $\mathcal{N}(\mu, \sigma^2)$ used for modelling non-negative quantities, this is fine because if μ is large $\mathbb{P}(\mathcal{N}(\mu, \sigma^2) < 0)$ is very small.

Proof. Let us check that *f^Z* is actually a density

$$
I = \int_{-\infty}^{\infty} e^{-x^2/2} \, dx
$$

Clever idea is to use I^2 instead

$$
I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-u^{2}/2} e^{-v^{2}/2} du dv
$$

=
$$
\int \int e^{-\frac{u^{2} + v^{2}}{2}} du dv
$$

Polar coordinates: $u = r \cos \theta$ and $v = r \sin \theta$.

$$
= \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} r e^{-r^2/2} d\theta dr
$$

$$
= 2\pi \int_{r=0}^{\infty} r e^{-r^2/2} dr
$$

$$
= 2\pi.
$$

 \Box

Claim 5.11 $\mathbb{E}[Z] = 0.$

Proof. Clear by symmetry, density is symmetric about origin, and its expectation is well-defined as tail decays rapidly. \Box

Claim 5.12 $Var(Z) = 1.$

Proof. STP:
$$
\mathbb{E}[Z^2] = 1
$$
.
\n
$$
\mathbb{E}[Z^2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-x^2/2} dx
$$
\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \cdot x e^{-x^2/2} dx
$$
\n
$$
= \left[-x \cdot \frac{e^{-x^2/2}}{\sqrt{2\pi}} \right]_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} dx
$$
\n
$$
= 1.
$$

 \Box

§5.5.1 Studing *N* (*µ, σ*²) **via linear transformation**

Claim 5.13 (Facts about $X \sim \mathcal{N}(\mu, \sigma^2)$)

- 1. *X* has the same distribution as $\mu + \sigma Z$ where $Z \sim \mathcal{N}(0, 1)$.
- 2. *X* has CDF $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ $\frac{-\mu}{\sigma}$).
- 3. $\mathbb{E}[X] = \mu$, $\text{Var}(X) = \sigma^2$.

Proof.

1. Let $g(x) = \mu + \sigma z$ so $g^{-1}(x) = \frac{x-\mu}{\sigma}$. Then $g(Z)$ has density

$$
f_{g(Z)}(x) = f_Z(g^{-1}(x)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right| \text{ by Theorem 5.1}
$$

$$
= \frac{1}{\sigma} f_Z \left(\frac{x - \mu}{\sigma} \right)
$$

$$
= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}.
$$

2.
$$
F_{g(Z)} = \mathbb{P}(g(Z) \le x)
$$

$$
= \mathbb{P}\left(Z \le \frac{x - \mu}{\sigma}\right)
$$

$$
= \Phi\left(\frac{x - \mu}{\sigma}\right).
$$

3. Use part (i) to get

$$
\mathbb{E}[X] = \mathbb{E}[\mu + \sigma Z]
$$

$$
= \mu + \sigma \mathbb{E}[Z]
$$

$$
= \mu
$$

$$
\text{Var}(\mu + \sigma Z) = \sigma^2 \text{Var}(Z)
$$

$$
= \sigma^2.
$$

 \Box

Remark 8*.* To calculate the cdf we only need to know Φ so you would only need to print out a table of values for Φ.

Example 5.7
\nLet
$$
X \sim \mathcal{N}(\mu, \sigma^2)
$$
.
\n
$$
\mathbb{P}(a \le X \le B) = \mathbb{P}\left(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}\right)
$$
\n
$$
= \mathbb{P}\left(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma}\right)
$$
\n
$$
= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).
$$

Special Case: $a = \mu - k\sigma$ and $b = \mu + k\sigma$ where $k \in \mathbb{N}$. Then $\mathbb{P}(a \leq X \leq b) = \Phi(k) - \Phi(-k)$. "within *k* standard deviations of the mean".

Definition 5.9 (Median)

Suppose that *X* is a continuous RV, the **median** of *X* is the number *m* s.t.

$$
\mathbb{P}(X \le m) = \mathbb{P}(X \ge m) = \frac{1}{2}
$$

In other words

$$
\int_{-\infty}^{m} f(x) dx = \int_{0}^{\infty} f(x) dx = \frac{1}{2}
$$

Remark 9*.*

- For *X ∼ N* (*µ, σ*²) and other distributions symmetric about their mean, the median $m = \mathbb{E}[X].$
- Sometimes $|X m|$ better than $|X \mu|$ for interpretation.

§5.6 More than one continuous RVs

Allow RVs to take values in \mathbb{R}^n . E.g. $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ a RV.

Definition 5.10 (Multivarite Density Function) We say that *X* has **multivariate density** $f : \mathbb{R} \to [0, \infty)$ if

$$
\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(u_1, \dots, u_n) \prod_{i \in \mathcal{A}} du_i
$$

Integrate over $(-\infty, x_1] \times \dots \times (-\infty, x_n]$

$$
=\int_{-\infty}^{x_1}\cdots\int_{-\infty}^{x_n}f(u_1,\ldots,u_n)\prod du_i.
$$

f is sometimes also called (especially for $n = 2$) a joint density function.

Consequence: This generalises: $\mathbb{P}((X_1,\ldots,X_n)\in A) = \int_A f(\boldsymbol{u}) d\boldsymbol{u}$ for all "measurable" $A \in \mathbb{R}^n$.

Definition 5.11 (Independence)

We say that X_1, \ldots, X_n are **independent** if $\forall x_1, \ldots, x_n$,

$$
\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \dots \mathbb{P}(X_n \le x_n)
$$

Goal: convert to statement about densities

Definition 5.12 (Marginal Density)

Let $X = (X_1, \ldots, X_n)$ have density f . The **marginal density** f_{X_i} of X_i is

$$
f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \ldots, x_n) \prod_{j \neq i} dx_j
$$

"The density of X_i viewed as a RV by itself. We fix x_i and let everything else vary."

Theorem 5.2

Let $X = (X_1, \ldots, X_n)$ has density f .

- 1. If X_1, \ldots, X_n are independent with marginals f_{X_1}, \ldots, f_{X_n} . Then $f(x_1, \ldots, x_n) = f_{X_1}(x_1) \ldots f_{X_n}(x_n)$
- 2. Suppose that *f* factorises as $f(x_1, \ldots, x_n) = g_1(x_1) \ldots g_n(x_n)$ for some nonnegative functions (g_i) . Then X_1, \ldots, X_n are independent and marginal $f_{X_i} \propto$ *gi* .

Proof.

1.
$$
\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \dots \mathbb{P}(X_n \le x_n)
$$

$$
= \left[\int_{-\infty}^{x_1} f_{X_1}(u_1) du_1 \right] \dots \left[\int_{-\infty}^{x_n} f_{X_n}(u_n) du_n \right]
$$

$$
= \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} \prod_{\text{matches definition of } f} f_{X_i}(u_i) \prod_{\text{in } f} du_i
$$
- 2. Idea:
	- replace $g_i(x)$ with $h_i(x) = \frac{g_i(x)}{\int g_i(u) \, du}$ so h_i *is* a density.
	- compute integrals for $\mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n)$ and $\mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n)$ x_1) \ldots $\mathbb{P}(X_n \leq x_n)$ and show equality.

 \Box

§5.7 Transformation of Multiple RVs

Example 5.8

Let *X* and *Y* be independent RVs with densities f_X and f_Y respectively. Goal: density of $Z = X + Y$.

$$
\mathbb{P}(X + Y \le z) = \iint\limits_{\{x+y\le z\}} f_{X,Y}(x, y) dx dy
$$

$$
= \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{z-x} f_X(x) f_Y(y) dx dy
$$

Substitute $y' = y + x$

$$
= \int_{x=-\infty}^{\infty} \left(\int_{y'=-\infty}^{z} f_X(x) f_Y(y'-x) \, dy' \right) \, dx
$$

 $y' \mapsto y$

$$
= \int_{y=-\infty}^{z} dy \left(\int_{x=-\infty}^{\infty} f_X(x) f_Y(y-x) dx \right)
$$

So the density of *Z* is:

$$
f_Z(z) = \int_{-\infty}^{\infty} f_Y(z - x) f_X(x) \, dx
$$

We call this function the *convolution* of f_X and f_Y .

For *X, Y* discrete, non-negative and independent we would have

$$
\mathbb{P}(X+Y=k) = \sum_{l=0}^{k} \mathbb{P}(X=l)\mathbb{P}(Y=k-l)
$$

Definition 5.13 (Gamma Distribution)

The **gamma distribution** has two parameters $\lambda > 0$ and $n \in \mathbb{N}$. Its range is $[0, \infty)$. We say $X \sim \Gamma(n, \lambda)$ and has density

$$
f_X(x) = e^{-\lambda x} x^{n-1} \frac{\lambda^n}{(n-1)!}
$$

$$
n = 1 \mapsto \text{Exp}(\lambda)
$$

$$
n = 2 \mapsto \lambda^2 x e^{-\lambda x}
$$

Example 5.9 (Exponential Distribution) Let *X, Y ∼* Exp(*λ*) be IID and *Z* = *X* + *Y* .

$$
f_Z(z) = \int_{-\infty}^{\infty} \lambda e^{-\lambda(z-x)} \lambda e^{-\lambda x} dx
$$

=
$$
\int_{0}^{z} \lambda^2 e^{-\lambda z} dx
$$

=
$$
\lambda^2 z e^{-\lambda z}.
$$

So *X* + *Y* $\sim \Gamma(2, \lambda)$ and in fact the sum of *n* IID Exp(λ) has distribution $\Gamma(n, \lambda)$.

Example 5.10 (Normal Distribution)

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $X_1+X_2 \sim \mathcal{N}(\mu_1, +\mu_2, \sigma_1^2+\sigma_2^2)$ (We already know what the mean and variance of $X_1 + X_2$ is, the interesting part is that it is normal).

We can prove this using convolution but we will prove it using generating functions soon, Example 5.13.

Theorem 5.3

Let $X = (X_1, \ldots, X_n)$ be a RV on $D \in \mathbb{R}^n$, $g : \mathbb{R}^n \to \mathbb{R}^n$ well-behaved and $U =$ $g(X) = (U_1, \ldots, U_n)$. Assume the joint density $f_X(x)$ is continuous. Then the joint density

$$
f_U(\boldsymbol{u}) = f_X\left(g^{-1}(\boldsymbol{u})\right) |J(\boldsymbol{u})|
$$

where *J*, the Jacobean, is

$$
J = \det \left(\underbrace{\left(\frac{\partial [g^{-1}(\boldsymbol{u})]_i}{\partial u_j} \right)_{i,j=1}^n}_{n \times n \text{ matrix}} \right)
$$

 \Box

"Proof". Definition of multivariate integration by substitution.

Top tip: *|*Jacobean of g^{-1} $=$ $\frac{1}{\text{Iacobee}}$ *|*Jacobean of *g|* .

$$
f_R(r) = e^{-\frac{r^2}{2}}r
$$

Thus Θ *, R* are independent and Θ is uniform on $[0, 2\pi)$.

Warning: Change of range. $\overline{\text{Eg}: X, Y} \geq 0.$ $\overline{Z} = X + \overline{Y}$.

$$
f_{X,Z}(x,z) = ?(x,z)1_{z \geq x}
$$

so *X, Z* are *not* independent even if ? splits as a product.

The support needs to be a rectangle as then the indicator function will split as a product.

§5.8 Moment Generating Function

Definition 5.14 (Moment Generating Function) Let *X* have density *f*. The **MGF** of *X* is

$$
m_X(\theta) = \mathbb{E}[e^{\theta X}]
$$

=
$$
\int_{-\infty}^{\infty} e^{\theta x} f(x) dx
$$

whenever this is finite.

Note. $m_X(0) = 1$.

Theorem 5.4

⁵This graphic doesn't seem to render properly in edge.

The MGF uniquely determines distribution of a RV whenever it exists $\forall \theta \in (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

Definition 5.15 (Moment)

The *n*th moment of *X* is $\mathbb{E}[X^n]$.

Theorem 5.5

Suppose $m(\theta)$ exists $\forall \theta \in (-\varepsilon, \varepsilon)$. Then $m^{(n)}(0) = \frac{d^n}{d\theta^n} m(\theta) \Big|_{m=0} = \mathbb{E}[X^n]$.

Proof comment: Use $\frac{\partial^n e^{\theta x}}{\partial \theta^n} = x^n e^{\theta x}$.

Claim 5.14

Let X_1, \ldots, X_n be independent and $X = X_1 + \cdots + X_n$. Then

$$
m_X(\theta) = \mathbb{E}[e^{\theta(X_1 + \dots + X_n)}]
$$

= $\mathbb{E}[e^{\theta X_1}] \dots \mathbb{E}[e^{\theta X_n}]$ by independence
= $\prod m_{X_i}(\theta)$.

Example 5.12 (Gamma Distribution) Let $X \sim \Gamma(n, \lambda)$.

$$
f_X(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!}
$$

$$
m(\theta) = \int_0^\infty e^{\theta x} e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!} dx
$$

Goal: Reduce to integral of pdf over range!

$$
= \int_0^\infty e^{-(\lambda-\theta)x} x^{n-1} \times \frac{\lambda^n}{(n-1)!} dx
$$

$$
= \left(\frac{\lambda}{\lambda-\theta}\right)^n \int_0^\infty e^{-(\lambda-\theta)} x^{n-1} \frac{(\lambda-\theta)^n}{(n-1)!} dx
$$

$$
= \begin{cases} \left(\frac{\lambda}{\lambda-\theta}\right)^n & \text{if } \theta < \lambda \\ \infty & \text{if } \theta \ge \lambda. \end{cases}
$$

So $Exp(\lambda)$ has MGF $\frac{\lambda}{\lambda-\theta}$. And we've proved that the sum of *n* IID $Exp(\lambda)$ has distribution Γ(*n, λ*).

a provided $\theta < \lambda$.

Example 5.13 (Normal Distribution) Let *X* $\sim \mathcal{N}(\mu, \sigma^2)$.

$$
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

$$
m_X(\theta) = \exp\left(\theta\mu + \frac{\theta^2\sigma^2}{2}\right)
$$

The proof is left as an exercise, try relating integral to integral of pdf of some normal distribution.

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then

$$
m_{X_1+X_2}(\theta) = \exp\left(\theta\mu_1 + \frac{\theta^2\sigma_1^2}{2}\right) \exp\left(\theta\mu_2 + \frac{\theta^2\sigma_2^2}{2}\right)
$$

$$
= \exp\left(\theta(\mu_1 + \mu_2) + \frac{\theta^2}{2}(\sigma_1^2 + \sigma_2^2)\right)
$$

$$
\frac{\log F \circ f \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)}{\log F \circ f \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)}
$$

§5.9 Convergence of RVs

Definition 5.16 (Convergence in Distribution)

Let $(X_n)_{n\geq 1}$ and X be RVs. X_n *converges to* X *in distribution,* $X_n\stackrel{d}{\to} X$, if $F_{X_n}(x)\to$ *FX*(*x*) for all *x* $\in \mathbb{R}$ which are continuity points of *FX*.

Example 5.14

Let $X_n = \frac{1}{n}$ Unif $(1, \ldots, n)$ and $X \sim$ Unif[0, 1].

FX continuous, $F_{X_n} \to F_X(x)$ holds $\forall \ x \in [0,1]$ by picture so $X_n \stackrel{d}{\to} X.$

Example 5.15

$$
X_n = \begin{cases} 0 & \mathbb{P} = \frac{1}{2} \\ 1 + \frac{1}{n} & \mathbb{P} = \frac{1}{2} \end{cases}
$$

$$
F_{X_n}(x) = \begin{cases} \frac{1}{2} & x \in (0, 1) \\ \frac{1}{2} & x = 1 \\ 1 & x > 1 \text{ when } n \text{ is large} \end{cases}
$$

$$
\text{Let } X \sim \text{Bern}\left(\frac{1}{2}\right)
$$

$$
F_X(1) = 1.
$$

But F_X has a discontinuity at $x = 1$ so $X_n \stackrel{d}{\rightarrow} X$.

(I.e. deterministic convergence of a sequence of real numbers is an example of convergence in distribution)

Claim 5.15

If *X* is a constant *c*, then convergence in distribution is equivalent to: $\forall \varepsilon > 0$: $\mathbb{P}(|X_n - c| > \varepsilon) \to 0$ as $n \to \infty$. "convergence in probability to constant".

Claim 5.16

If X is a continuous RV with $X_n\stackrel{d}{\to}X$ then $\mathbb{P}(a\leq X_n\leq b)\to \mathbb{P}(a\leq X\leq b)$ for all $a, b \in [-\infty, \infty]$.

Warning: Does not say that densities converge, e.g. in Example 5.14, *Xⁿ* does not have a density.

§5.10 Laws of Large Numbers

$$
\frac{S_n}{n}``\to"'\mu
$$

Theorem 5.6 (Weak LLN)

Let $(X_n)_{n\geq 1}$ be IID with $\mu = \mathbb{E}[X_1]$ finite. Set $S_n = X_1 + \cdots + X_n \quad \forall n \geq 0$. Then

$$
\forall \varepsilon > 0: \ \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \to 0 \text{ as } n \to \infty
$$

Proof. (Assume $Var(X_1) = \sigma^2 < \infty$) $\mathbb{P}\left(\bigg| \right)$ *Sn* $\left| \frac{S_n}{n} - \mu^a \right|$ $> \varepsilon$) = $\mathbb{P}(|S_n - n\mu| > \varepsilon n)$ $\leq \frac{\text{Var}(S_n)}{2n}$ $\frac{d\mathbf{x}(\mathcal{L}_n)}{\mathcal{E}^2 n^2}$ by Chebyshev's Inequality $=\frac{n\sigma^2}{2}$ $\frac{n}{\varepsilon^2 n^2} \to 0$ as $n \to \infty$. $\varepsilon >0$ is fixed we are not taking limit as $\varepsilon \to 0.$ *^a*Also E - *Sn n* 1

§5.11 Central Limit Theorem

Theorem 5.7 (Central Limit Theorem) Let $(X_n)_{n\geq 1}$ be IID with $\mu = \mathbb{E}[X_1]$ finite and $\sigma^2 < \infty$. Set $S_n = X_1 + \cdots + X_n \quad \forall n \geq 1$

0. Then

$$
\frac{S_n-n\mu}{\sqrt{n\sigma^2}}\stackrel{d}{\to} \mathcal{N}(0,1) \text{ as } n\to\infty.
$$

Discussion: Three stage summary

- 1. Distribution of S_n concentrated on $n\mu$ we already know this from WLLN.
- 2. Fluctuations around $n\mu$ have order \sqrt{n} new and important
- 3. Shape is normal detail.

We use CLT by

1.
$$
S_n \stackrel{d}{\approx} \mathcal{N}(n\mu, n\sigma^2)
$$

\n2.
$$
\mathbb{P}(a \le S_n \le b) = \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n\sigma^2}} \le \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \le \frac{b - n\mu}{\sqrt{n\sigma^2}}\right).
$$
\n
$$
= \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n\sigma^2}} \le Z \le \frac{b - n\mu}{\sqrt{n\sigma^2}}\right).
$$

Theorem 5.8 (Continuity Theorem for MGFs) Let (X_n) and *X* have MGFs m_{X_n} and m_X . If

- $m_X(\theta) < \infty$ for $\theta \in (-\varepsilon, \varepsilon)$.
- \bullet $m_{X_n}(\theta) \to m_X(\theta) \quad \forall \ \theta \text{ s.t. } m_X(\theta) < \infty.$

Then $X_n \stackrel{d}{\to} X$.

Proof. Part II Probability and Measure.

Idea: Expand $m_X(\theta)$ as a Taylor series around 0.

$$
m_X(\theta) = 1 + m'_X(0)\theta + \frac{m''_X(0)}{2!}\theta^2 + \dots
$$

= 1 + \theta \mathbb{E}[X] + \frac{1}{2}\theta^2 \mathbb{E}[X^2] + o(\theta^2)

Proof - WLLN via MGFs.

Comment: We know MGF of S_n , we want to study the MGF of S_n/n .

$$
m_{S_n/n}(\theta) = \mathbb{E}\left[\exp\left(\theta \frac{S_n}{n}\right)\right]
$$

$$
= \mathbb{E}\left[\exp\left(\frac{\theta}{n}S_n\right)\right]
$$
 Key step.
\n
$$
= m_{S_n}(\theta/n)
$$

\n
$$
= m_{X_1}(\theta/n) \dots m_{X_n}(\theta/n)
$$

\n
$$
= \left(1 + \mu \frac{\theta}{n} + o\left(\frac{1}{n}\right)\right)^n
$$

\n
$$
\to e^{\mu\theta}
$$

 $\stackrel{d}{\rightarrow}$ μ by the continuity theorem. $e^{\mu\theta}$ is the MGF of the RV $X = \mu$ with $\mathbb{P} = 1$, so $\frac{S_n}{n}$ \Box

Proof - CLT via MGFs.

Assume WLOG $\mu = 0$ and $\sigma^2 = 1$. (so $\mathbb{E}[X_i^2] = 1$). In general $X \mapsto \frac{X - \mu}{\sqrt{\sigma^2}}$ STP: $S_n/\sqrt{n} \stackrel{d}{\rightarrow} \mathcal{N}(0, 1)$.

$$
m_{X_i}(\theta) = 1 + \frac{\theta^2}{2} + o(\theta^2)
$$

\n
$$
m_{S_n/\sqrt{n}}(\theta) = \mathbb{E}\left[\exp\left(\theta \frac{S_n}{\sqrt{n}}\right)\right]
$$

\n
$$
= \mathbb{E}\left[\exp\left(\frac{\theta}{\sqrt{n}}S_n\right)\right]
$$

\n
$$
= m_{S_n}(\theta/\sqrt{n})
$$

\n
$$
= m_{X_1}(\theta/\sqrt{n}) \dots m_{X_n}(\theta/\sqrt{n})
$$

\n
$$
= \left(1 + \frac{\theta^2}{2n} + o\left(\frac{1}{n}\right)\right)^n
$$

\n
$$
\to e^{\theta^2/2}
$$

 $e^{\theta^2/2}$ is the MGF of the $\mathcal{N}(0,1)$.

Theorem 5.9 (Strong LLN)

Let $(X_n)_{n\geq 1}$ be IID with $\mu = \mathbb{E}[X_1]$ finite and $\sigma^2 < \infty$. Set $S_n = X_1 + \cdots + X_n \quad \forall n \geq 1$ 0. Then

 \Box

$$
\mathbb{P}\left(\frac{S_n}{n}\to \mu \text{ as } n\to \infty\right)=1.
$$

"almost sure convergence" or "convergence with probability 1".

§5.12 Inequalities for $\mathbb{E}[f(X)]$

Motivation: For $f(x) = x^2$ we know $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$ as $\text{Var}(X) \ge 0$.

Question What about general *f*?

Definition 5.17 (Convex Function) A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if $\forall x, y \in \mathbb{R}$ and $t \in [0, 1]$

$$
f(tx + (1-t)y) \le tf(x) + (1-t)f(y).
$$

Definition 5.18 (Stricly Convex Function) A function $f : \mathbb{R} \to \mathbb{R}$ is **stricly convex** if $\forall x, y \in \mathbb{R}$ and $t \in (0, 1)$

$$
f(tx + (1-t)y) < tf(x) + (1-t)f(y).
$$

Lemma 5.1 (Existence Of Subdifferential) If $f : \mathbb{R} \to \mathbb{R}$ convex then $\forall y \quad \exists$ line $l(x) = mx + c$ s.t.

- $l(x) \leq f(x) \quad \forall x$
- $l(y) = f(y)$

Warning: not yet claiming *l* is a tangent.

Proof. Convexity \implies ∀ *x* < *y* < *z* insertpicture

$$
\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}
$$
\n
$$
\text{Let } M^- = \sup_{x < y} \frac{f(y) - f(x)}{y - x}
$$
\n
$$
M^+ = \inf_{z > y} \frac{f(z) - f(y)}{z - y}
$$
\n
$$
M^- \le M^+.
$$

Any value $m \in [M^-, M^+]$ works as the gradient of *l*.

Definition 5.19 (Concave Function) *f* is concave iff *−f* is convex.

Claim 5.17

If *f* is twice differentiable:

$$
f \text{ convex} \iff f''(x) \ge 0 \quad \forall \ x.
$$

Example 5.16

$$
f(x) = \frac{1}{x}
$$
 is convex on $(0, \infty)$
is concave on $(-\infty, 0)$.

Theorem 5.10 (Jensen's Inequality) Let *X* be a RV and *f* a convex function:

$$
\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]).
$$

(reverse the inequality if *f* concave).

Proof. Set $y = \mathbb{E}[X]$ as in Existence Of Subdifferential, so $\exists l(x) = mx + c$ s.t. $l(y) =$ $f(y) = f(E[X])$ and $f \ge l$.

$$
\mathbb{E}[f(X)] \ge \mathbb{E}[l(X)]
$$

= $\mathbb{E}[mX + c]$

 $= m\mathbb{E}[X] + c$ $=$ $my + c$ $=$ *l*(*y*) $= f(\mathbb{E}[X]).$

Claim 5.18

If *f* is strictly convex then $\mathbb{E}[f(X)] = f(\mathbb{E}[X])$ iff $X = \mathbb{E}[X]$ with $\mathbb{P} = 1$, i.e. constant RV.

Informal comment: Jensen's inequality is better than most other inequalities as many can be derived from Jensen's.

§5.13 Application to sequences

Definition 5.20 (AM - GM inequality) Let $x_1, \ldots, x_n \in (0, \infty)$.

$$
\frac{x_1 + \dots + x_n}{n} \ge \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}
$$

Proof of n = 2*.*

$$
0 \le (x - y)^2
$$

= $x^2 - 2xy + y^2$
= $x^2 + 2xy + y^2 - 4xy$
= $(x + y)^2 - 4xy$

 \Box

Proof. Let *X* be a RV taking values x_1, \ldots, x_n each with probability $\frac{1}{n}$. Let $f(x) =$ *−* log *x*, which is convex by second derivative.

$$
\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]) \text{ by Jensen's Inequality}
$$

$$
-\frac{\log x_1 + \dots \log x_n}{n} \ge -\log \left(\frac{x_1 + \dots + x_n}{n}\right)
$$

$$
\log \left((x_1 \dots x_n)^{\frac{1}{n}}\right) \le \log \frac{x_1 + \dots x_n}{n}
$$

 $\log x$ and e^x are increasing.

$$
\left(\prod x_i\right)^{\frac{1}{n}} \leq \frac{x_1 + \dots + x_n}{n}.
$$

 \Box

§5.14 Sampling a Continuous RV

Theorem 5.11

Let *X* be a continuous RV with CDF *F*. Then if $U \sim \mathrm{U}[0,1]$, we have $Y = F^{-1}(U) \sim$ *X^a* .

 a Remember that *U* is a RV and *F* is just a increasing function

P[ro](#page-85-0)of. Goal: Find CDF of *Y* .

$$
\mathbb{P}(Y \le x) = \mathbb{P}(F^{-1}(U) \le x)
$$

rearrange within $\mathbb{P}()$

$$
= \mathbb{P}(U \le F(x))
$$

$$
= F(x)
$$

CDF of $Y = \text{CDF of } X$, so $Y \sim X$.

§5.15 Rejection Sampling

Sampling uniformly on $[0,1]^d$ is easy, we simply take $(U^{(1)},\ldots,U^{(d)})$ IID where $U^i\sim$ U[0*,* 1].

Question

How do we sample uniformly on *A*? insertpicture

Goal:

$$
f(x) = \begin{cases} \frac{1}{\text{area}(A)} & x \in A \\ 0 & x \notin A. \end{cases}
$$

$$
= \frac{1_A}{\text{area}(A)}.
$$

In higher dimensions, use volume(*A*) *−*1 .

Let U_1, U_2, \ldots be IID uniform on $[0, 1]^d$ and let $N = \min\{n : U_n \in A\}$.

Claim 5.19

 U_N is uniform on *A*. (i.e. has density *f*)

Proof. Note $\mathbb{P}(N < \infty) = 1$ if $area(A) > 0$. $\text{STP: } \mathbb{P}(U_N \in B) = \int_B f(x) \, dx = \frac{\text{area}(B)}{\text{area}(A)}$ $\frac{\text{area}(B)}{\text{area}(A)}$ $\forall B \subset A$ with a well-defined area. $\mathbb{P}(U_N \in B) = \sum$ *n≥*1 $\mathbb{P}(U_N \in B, N = n)$ by Law of Total Probability $=$ \sum *n≥*1 $\mathbb{P}(U_1 \notin A, \ldots, U_{n-1} \notin A, U_n \in B)$ $=$ \sum *n≥*1 $\mathbb{P}(U_1 \notin A)^{n-1}\mathbb{P}(U_n \in B)$ as U_i [are independent](#page-21-0) $=$ \sum *n≥*1 $(1 - \operatorname{area}(A))^{n-1} \operatorname{area}(B)$ $=\frac{\text{area}(B)}{1-(1)}$ 1 *−* (1 *−* area(*A*)) $=\frac{\text{area}(B)}{A}$ $\frac{\text{area}(B)}{\text{area}(A)}$.

Claim 5.20

Let *X* be a continuous RV on [0, 1] with *bounded* density f_X . Let *A* = {(*x, y*) : *x* ∈ [0*,* 1*], y* ≤ *fx*(*x*)*}*, i.e. the green region. Let $U = (U^{(1)}, U^{(2)})$ be uniform on A . Then $U^{(1)} \sim X$.

insertpicture

Proof.

$$
\mathbb{P}(U^1 \le u) = \mathbb{P}(U \in \text{blue region})
$$

= area({{(x, y) : x \le u, y \le f_X(x)}})
=
$$
\int_0^u f_X(x) dx
$$

=
$$
F_X(u).
$$

So the CDF of $U^{(1)}$ is F_X .

 \Box

Claim 5.21 Let X be a continuous \textsf{RV} on $[-k,k]^d$ with *bounded* density $f_X.$ Let $A = \{(\boldsymbol{x}, y) : \boldsymbol{x} \in [-k, k]^d, y \leq f_X(x)\} \in \mathbb{R}^{d+1}$. Let $U = (U, U^+)$ be uniform on A. Then $U \sim X$.

§5.16 Multivariate Normal Distribution

Definition 5.21 (Gaussian RV) A RV *X* is Gaussian if $X \sim \mathcal{N}(\mu, \sigma^2)$.^{*a*}

 ${}^a X$ is a one dimensional normal.

Recall if *X*, *Y* are i[n](#page-87-0)dependent Gaussians then $bX + cY$ is Gaussian, Example 5.13.

Question

Does there $∃$ joint RVs (X, Y) s.t. *X, Y* both Gaussian but *X* + *Y* is not?

Answer

Yes but the answer is annoying and doesn't have any real physical interpretation.

Question

Can we have dependent *X*, *Y* s.t. $bX + cY$ still holds?

Answer

Yes.

Definition 5.22 (Gaussian Random Vector) A random vector (X, Y) is **Gaussian** if $bX + cY$ are a Gaussian RV \forall $b, c \in \mathbb{R}$.

§5.16.1 Linear Algebra Rewrite

Definition 5.23 (Gaussian Random Vector) Random vector $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ is Gaussian if $u^T X$ is a Gaussian RV $\forall u \in$ \mathbb{R}^n .

Let $\mu = \mathbb{E}[X] \in \mathbb{R}^n$.

Definition 5.24 (Covariance Matrix) The **covariance matrix** *V* is

$$
V = (\text{Cov}(X_i, X_j))_{i,j=1}^n \in \mathbb{R}^{n \times n}
$$

For $n = 2 : V =$ $\int \text{Var}(X) \quad \text{Cov}(X, Y)$ $Cov(Y, X)$ $Var(Y)$ \setminus .

Claim 5.22 The covariance matrix is symmetric.

Claim 5.23 If X is a Gaussian random vector then $u^TX \sim \mathcal{N}(u^T\mu, u^TVu).$

Definition 5.25 (Moment Generating Function in R *n*) Let $X \in \mathbb{R}^n$ be a RV. The **MGF** of *X* is

$$
m_X(u) = \mathbb{E}\left[e^{u^T X}\right]
$$

whenever this is finite.

Theorem 5.12

The MGF uniquely determines distribution of a RV whenever it exists $\forall u \in (-\varepsilon, \varepsilon)^n$ for some $\varepsilon > 0$.

Claim 5.24

If *X* Gaussian $m_X(u) = m_{u^TX}(1) = \exp\left(u^T\mu + \frac{1}{2}\right)$ $rac{1}{2}u^TVu$.

Logical overview: $X \in \mathbb{R}^n$ Gaussian.

- distribution defined by MGF
- MGF defined by μ and V \implies distribution of *X* defined by μ and *V*.

Remark 10*.* Density is

$$
f_X(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{\sqrt{\det(V)}} \exp\left(-\frac{1}{2}(x-\mu)^T V(x-\mu)\right)
$$

Claim 5.25

Return to $n = 2$: For a Gaussian vector (X_1, X_2) it is independent \iff $Cov(X_1, X_2) = 0. \iff$ is false in general.

Why useful? Imagine *X*1*, X*² describe real-world parameters, e.g. height vs 1 km rowing time.

- Independence would be an interesting conclusion
- Cov can be sampled.

Proof. $X = (X_1, X_2)$ is independent iff $m_X((u_1, u_2))$ splits as a product $m_1(u_1)m_2(u_2)$.

$$
\exp\left(u^T\mu\right) = \exp(u_1\mu_1)\exp(u_2\mu_2)
$$

$$
\exp\left(\frac{1}{2}u^T V u\right) = \exp\left(\frac{1}{2}u_1^2\sigma_1^2\right)\exp\left(\frac{1}{2}u_2^2\sigma_2^2\right)\exp(u_1u_2\operatorname{Cov}(X_1, X_2))
$$

 \Box

Therefore splits iff $Cov = 0$.

Motivation: $Cov(100X_1, X_2) = 100 Cov(X_1, X_2)$, so "large covariance" doesn't imply "very dependent".

Definition 5.26 (Correlation) The **correlation** of *X, Y* is

$$
Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X) Var(Y)}} \in [-1, 1].
$$

Proposition 5.1

If (X, Y) Gaussian, then $Y = aX + Z$ where *Z* is Gaussian and (X, Z) independent.

Proof. Define $Z = Y - aX$ for $a \in \mathbb{R}$.

Claim 5.26 (*X, Z*) is Gaussian *Proof.*

$$
u_1X + u_2Z = u_1X + u_2(Y - aX)
$$

= $(u_1 - au_2)X + u_2Y$.

 \Box

Goal: find *a* s.t. $Cov(X, Z) = 0$ $Cov(X, Z) = Cov(X, Y - aX) = Cov(X, Y) - b$ $a \text{Var}(X)$ so take $a = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$ $\frac{\partial v(X,Y)}{\partial x(X)}$. Then $Cov(X,Z) = 0 \implies X, Z$ independent.

§5.17 Bertrand's Paradox

Example 5.17

$$
C = 2\sqrt{r^2 - X^2}
$$

$$
\mathbb{P}(C \le r) = \mathbb{P}(2\sqrt{r^2 - X^2} \le r)
$$

$$
= \mathbb{P}(4(r^2 - X^2) \le r^2)
$$

$$
= \mathbb{P}(4X^2 \ge 3r^2)
$$

$$
= \mathbb{P}(X \ge \sqrt{33}/2)
$$

$$
= 1 - \frac{\sqrt{3}}{2}
$$

$$
\approx 0.134
$$

Example 5.18 (cont.) 2 nd interpretation: Let *θ ∼* [0*,* 2*π*] Let *C* = *|AB|* If *θ ∈* [0*, π*]:

$$
C = 2r\sin\frac{\theta}{2}
$$

If
$$
\theta \in [\pi, 2\pi]
$$
:

2

$$
\mathbb{P}(C \le r) = \mathbb{P}(2r \sin \frac{\theta}{2} \le r)
$$

= $\mathbb{P}(\sin \frac{\theta}{2} \le \frac{1}{2})$
= $\mathbb{P}(\theta \le \frac{\pi}{3}) + \mathbb{P}(\theta \ge \frac{\pi}{3})$
= $\frac{1}{6} + \frac{1}{6}$
= $\frac{1}{3}$
 $\approx 0.333...$

§5.18 Buffon's Needle

Throw the needle at random. What is the probability it intersects at least one line?

$$
\theta \sim U[0, \pi], X \sim U[0, L]
$$
 indep.

It intersects a line iff $X \leq l \sin \theta$.

$$
\mathbb{P}(\text{intersection}) = \mathbb{P}(X \le l\sin\theta) = \int_0^L \int_0^\pi \frac{1}{\pi L} 1(x \le l\sin\theta) \, \mathrm{d}x \, \mathrm{d}\theta = \frac{2l}{\pi L}
$$

So $p = \frac{2l}{\pi l}$ *πL*

$$
\implies \pi = \frac{2l}{pL}
$$

Want to use this experiment to approximate π . Throw n needles indep. and let \hat{p}_n

be the proportion intersecting a line. Then \hat{p}_n approximates p and so

$$
\hat{\pi}_n = \frac{2l}{\hat{p}_n} L \text{ approximates } \pi
$$

Suppose

$$
\mathbb{P}(|\hat{\pi}_n - \pi| \le 0.001) \ge 0.99
$$

How large should *n* be?

Example 5.20 (cont.)

 S_n = number of needles intersecting a line

$$
S_n \sim \text{Bin}(n, p)
$$

By the CLT, $S_n \sim np + \sqrt{np(1-p)} \cdot Z, Z \sim N(0, 1)$

$$
\hat{p}_n = \frac{S_n}{n} \approx p + \sqrt{\frac{p(1-p)}{n}} \cdot Z
$$

So

$$
\hat{p}_n - p \approx \sqrt{\frac{p(1-p)}{n}}.
$$

Define $f(x) = \frac{2l}{xL}$. Then $f(p) = \pi$ and $f'(p) = -\pi/p$ and $\hat{\pi}_n = f(\hat{p}_n)$. By Taylor expansion, $\hat{\pi}_n = f(\hat{p}_n) \approx f(p) + (\hat{p}_n - p)f'(p)$

$$
\implies \hat{\pi}_n \approx \pi - (\hat{p}_n - p) \cdot \frac{\pi}{p}
$$

$$
\implies \hat{\pi}_n - \pi \approx -\frac{\pi}{p} \sqrt{\frac{p(1-p)}{n}} = -\pi \sqrt{\frac{1-p}{pn}} \cdot Z
$$

We want

$$
\mathbb{P}\left(\pi\sqrt{\frac{1-p}{pn}}\cdot|Z|\leq0.001\right)\geq0.99
$$

Have $\mathbb{P}(|Z| \ge 2.58) = 0.01$ and $\pi^2 \cdot \frac{1-p}{m}$ $\frac{p-p}{pn}$ decreasing in *p*. Minimise $π^2 \cdot \frac{1-p}{pn}$ $\frac{p-p}{pn}$ by taking $l = L \implies p = \frac{2}{\pi}$ $\frac{2}{\pi}$ and

$$
= \frac{\pi^2}{n} \left(\frac{\pi}{2} - 1 \right)
$$

Taking

$$
\sqrt{\frac{\pi^2}{n} \left(\frac{\pi}{2} - 1 \right)} \cdot 2.58 = 0.001 \implies n = 3.75 \times 10^7
$$