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§1 Groups and homomorphisms

§1.1 Motivation

Groups are the abstractions of symmetries, a unified way to investigate symmetries.

§1.2 Basic Definitions and Examples

Definition 1.1 (Binary operation)

A binary operation * on a set X is a way of combining two elements of X to unam-
biguously give another element of X, ie. x: X x X — X.

Definition 1.2 (Group)

If G is a set and * is a binary operation on G then (G, ) is a group if the following
four axioms hold:

l.z,ye G = zxyeG (closure)
2. Janelement e € G satisfyingz xe =2 =ex*x (existence of an identity)
3. forevery x € G thereisay € Gs.t. zxy=e=yx*x (existence of inverses)

4. foreveryz,y,z2 € G,z (y*z) = (x*y)*2 (the associative law)

Remark 1. e is called the identity of G - see Lemma 1.1 for why it is unique. We will show
in Lemma 1.1 that inverses are unique and we will write 2~ for the inverse of z.

Example 1.1
(Z,+),e=0,z7 = -z

Example 1.2
@Q +), (R, +)

Example 1.3
@\ {0}, %)

Non Example 1.1 (Z, —) - associativity fails

Non Example 1.2 (Z, %) - no inverses



Non Example 1.3 (Q, *) - 0~! does not exist

These have all had an infinite number of elements, so onto some finite groups.

Example 1.4 (The trivial group)
(e, %)

Example 1.5
({£1}, x). A nice way to look at a group is to look at a multiplication table.

x |1 -1
1 [ -1
—-1|-1 1

Wecanseee = 1and (—1)"! = —1

Example 1.6
({0,1,2}, +3). +3 is addition modulo 3.

Wecanseee =0and 171 =2

Example 1.7
({e,a,b,c},*)
* ‘ e a b ¢
ele a b ¢
ala e ¢ b
bl|b ¢ e a
cle b a e

You may notice that in any row no element is repeated, this is due to the cancellation
law, Remark 6.



Example 1.8

Rotations and reflections of an equilateral triangle.

1 1 2

Rotation Rotation
120° 240°
(o) o2
3 2

Wi

operation o = do right transformation then left transformation

Claim: This defines a group with 6 elements

Example 1.9

M>(R) = {2 x 2 matrices with entries in R}

a b
_[<c d).a,b,c,dGR]
under addition

a b a B\ _ (at+a b+p
¢c d) Ty 6] T \ctny dts

A more interesting example is

Example 1.10

GLs(R) = {invertible 2 x 2 matrices with entries in R}.



d

1 d b
=i __
e det A (—c —a)

Under multiplication this is a group. G'L stands for general linear group.

A= (i b),detA:ad—bc;éO

Lemma 1.1

Let (G, ) be a group.

i. The identity element is unique.

ii. Inverses are unique.

Proof.

i. Suppose e and é are both identities, so
axe=a=exa, axé=a=¢&xa Vac€QG.

In particular

ii. Suppose both y and z are inverses for x, so

TH*Y=€e=Y*T, THZ=€=2%1

Then,y =y xe

=yx*(z*2z)

=(yxx)*z (associative law)
—ex*xz

= %,

O

Remark 2. Associativity means we don’t need brackets, = * y * z is unambiguous. Fur-
thermore, by induction, 1 * z3 * - - - % 2, is unambiguous.

We know the statement is true for the case n = 3.

xy* (o %k wy) = (T % 22) * (T3 % -+ % 2p)

= (w1 % xo*w3) * (Tg* -k Tp)



= (1 * Do %% Tp_1) * Tp,

Remark 3. We often omit “«” and write zy for x * y and G for (G, *).

-1

Remark 4. (zy)~! = y~to~L. Since it works:

2Tt =a(yy e
1

(zy)y~ -

= zexr

=gz !

=e
Note, inverses are unique

Remark 5. (z=1) "t =2

Remark 6.

z,y,2 € Gand xy = xz
- m_lxy =z ez
—
Definition 1.3 (Abelian group)
A group G is abelian (or commutative) if zy = yx forall z,y € G.

Note all our examples above are abelian except 1.8 and 1.10.

Definition 1.4 (Order of group)

Y=z (cancellation law)

Let G be a group. If the number of elements in the set G is finite, then G is called a
finite group. Otherwise, G is called an infinite group. If G is a finite group denote the

number of elements in the set G by |G| and call this the order of G.

Definition 1.5 (Subgroup)

Let (G, *) be a group and H asubsetof G (H C Gie.h € H = h € G). Then
(H, *) is a subgroup of (G, *) if (H, x) is a group (with same operation) i.e. if

a) h,ke H = hxke H
b) e € H
c) he H = hlecH



(Note associativity is inherited)

i.e restricting operation to H still gives a group. We write H < G.

Example 1.11

(Z,+) < (@Q+) < (R, +)
Example 1.12

({£1}, x) < (Q@\ {0}, x)
Example 1.13

In Example 1.8 if we just take the rotations we get a subgroup, {1, 0,02} is a sub-
group.

Example 1.14

In Example 1.10, we can take the matrices with determinant 1 which is SL2(R) (SL
stands for the special linear group).

SLy(R) = {A € GLy(R) : det A = 1}
< GLy(R)

We always have identity and whole thing as subgroups.

Example 1.15
If G is a group then {e} < G is the trivial subgroup.

Example 1.16
If G is a group then G < G is the improper subgroup.

Proposition 1.1
Subgroups of Z are exactly nZ = {nk : k € ZZ} where n € Z>( (under addition).



Proof. First note nZ is a subgroup of Z.

a. If a,b € nZ then a = na’ and b = nb’ for some o',/ € Z. Thena +b =
na' +nb =n(d +V) enZ
b. 0 € nZ.

1

c. f wehavea = na’ € nZthena ™" = —a = n(—d’) € nZ.

Conversely assume H < Z.
If H={0} =0Z.

Otherwise choose 0 < n € H with n minimal (smallest positive element of H).
Then nZ € H by closure and inverses. We show H = nZ. Suppose 3 h € H \ nZ,
then we can write h = nk + b/ with b’ € {1,2,...,n —1}. Buth' = h—nk € H,
contradicting minimality of n. Thus H = nZ. O

Aside: Functions
We need the notion of functions.

Definition 1.6 (Function)

f is a function between sets A and B if it assigns each element of A a unique element
of B.

f:A—>B
a— f(a)

Example 1.17

eg: f:Z— 17 g:7— 17
r—x+1 T — 2.

Definition 1.7 (Composition of functions)
Supposeg: A — Band f : B — C, define
fog: A—=C
a (fog)(a) = f(g(a))



Example 1.18

(fog)@) =20+ 1
(go f)(z) =2z +2.

Suppose f1 : A — Band f» : A — Bthen f; = foif fi(a) = fo(a) Vae A

Definition 1.8 (Bijective functions)

f+ A — Bisa bijection if it defines a paring between elements of A and elements of
B. Thatis given b € B Junique a € As.t. f(a) = 0.

Example 1.19

f:Z—-7
r—x+1

Definition 1.9 (Inverse function)

If we have a bijection we can define
f1:B—A
b — a where f(a) = b.
Then fo f~! =idp fltof=ida
idg(b) =b

Lemma 1.2
Ifg: A— Band f: B — C are bijections thensois fog: A — C.

Proof. See Numbers and Sets ]

Definition 1.10 (Group homomorphism)
Let (G, *¢) and (H, *p) be groups. Then the function

0:G— H

10



is a homomorphism if
0(z x¢y) =0(x) *m 6(y) Vz,y € G.

‘A map which respects the group operation’.

Example 1.20
G = ({0,1,2,3},44), H = ({1,e™/2,e™, e3™/2 %) (the 4th roots of unity).

0:G— H

n s enﬂ'i/Q

O(n+4m) = P a2

_ e(n+4m)7ri/2 dkmi/2 _ 1

sincen+m=mn-+4m+4kand e
_ enﬂ'i/? > emmﬁ/Z

=6(n) x O(m)

Lemma 1.3

Let G and H be groups and suppose we have a homomorphism 6 : G — H. Then
0(G) ={6(g) : g € G}, the image of 0, is a subgroup of H, written 6(G) < H.

Proof. 6(G) C H by definition of 6.
Closure: Let z,y € (G). Then z = 0(g) and y = 0(h) for some h, g € G.

zxpy = 0(g) xm 0(h)
= 0(g *¢ h) as 6 is a homomorphism

€ 0(Q).
Identity:
O(eq) = b(eq *¢ eq)
= 0(ec) *u 0(ec)
premultiplying by 0(eq) ™' € H
eg = 0(eq) € 0(G)
Inverses:

Letxz =0(g) € 6(G)

11



er = 0(eq) = 0(g*a g ")
=0(9) *m 0(g™")
=z (g ")
also =0(g ' *c 9)
=0(g ) *pa
Inverses are unique
= 0(9) " =0(g7") €6(G)

Associativity is inherited. O

Definition 1.11 (Isomorphism)

A bijective homomorphism is called an isomorphism. If G and H are groups and
0 : G — Hisanisomorphism we say G and H are isomorphic and write G = H. The
bijective part tells us the sets are the same and the homomorphism tells us the group
operation is the same so an isomorphism tells us the groups are the “essentially the
same”.

See Example 1.20

G = ({0,1,2,3},+4) = {1,e™/2 ™ 3/2 x) = H
0:-G— H

n— enmj/?

¢ is an isomorphism.

Lemma 1.4

i. The composition of two homomorphisms is a homomorphism, similarly for
isomorphisms, thus if G; = G2 and Ga = G3 then G = Gs.

ii. If @ : Gy — G> is an isomorphism then so is its inverse ! : G5 — G;. So
GlgGQ — G‘Q%Gl.
Proof.
i. Suppose

01 : (G1,*1) = (Ga,*2)
92 : (GQ, *2) — (G3, *3)

are homomorphisms. Thus 6, o 6; is a function from G to G'3, we need to

12



check if its a homomorphism.

Letz,y € Gy
02 0 01(z *1 y) = 02(01(x) *2 61(y)) since #; is a homomorphism
= 02(01(x)) *3 62(01(y)) since 03 is a homomorphism

= (02001)(x) x3 (62 001)(y)

ii. 0 is a bijection so §~! exists, we need to show its a homomorphism.

Lety, z € Gs.
Then 3 z, k € G, s.t.
0 YY) =x,0"(2) =k
Note, 0(x x1 k) = 0(x) %2 0(k)
=y *92
— 0y 2)=x* k
=07 (y) x1 67 (2)

Notation. If x € (G, *), n € Z. Then

THT k- %2 n>0
l’nz e n —=
sz lx vzl n<o

Definition 1.12 (Cyclic group)

A group H is cyclic if 3 h € H such that each element of H is a power of 4, i.e. for
eachxz € H 3 m € Zs.t. x = h'. Then h is called a generator of H and we write
H = (h).

Example 1.21

(Z,+) = (1) = (—1), the infinite cyclic group. We showed all subgroups of (Z, +)
are cyclic in Proposition 1.1.

Example 1.22
({£1},+) = (-1)

13



Example 1.23
({07 1,2, 3}’ +4) = <1> = <3>

Note a cyclic group is abelian.

Definition 1.13 (Order of element)

Let G be a group and g € G. The order of g, written as o(g), is the least positive
integer n such that g" = ¢, if it exists. Otherwise g has infinite order.

Lemma 1.5
Suppose G is a group, g € G and o(g) = m. Let n € N5(. Then

g"=e <= m|n

Proof. (<=) Suppose m | n, then n = gm for some g € N.
f— gn:gqm:(gm)qzeqze

— ) Suppose ¢g" = e. Writen = gm +r with0 <r <m, g € N.
PP

— e = g’l’b = gqm+r

=(9™)""
= qu’l‘

= egT

= gT'
— r = 0 by minimality of m = n = ¢m as required.

Remark 7.

i. Suppose g € G. Then {¢" : n € Z} is a subgroup of G, in fact it is the smallest
subgroup of G containing g. We call it the subgroup of G generated by g and
write (g) = {¢" : n € Z}. Also |(g)| = o(g) if finite. Since if o(g) = m, (g) =
{e, 9,9, ...,9™ ! = g~'}. Otherwise both infinite.

ii. We can define the abstract cyclic group of order n
Cy, = (z), where o(x) = n.

Then ({0,1,...,n — 1},+,) and ({n roots of unity}, x) are realisations of this
group, they are all isomorphic.

14



iii. Let G be a group and g1,...,9x € G. Then the subgroup of G generated by
gi,--., gk denoted (g1, ..., gr) is the smallest subgroup of G containing all the g;’s.
It is the intersection of all the subgroups of G containing all the g;’s.

15



§2 The Dihedral and Symmetric Groups

First note composition of functions is associative

fgh: X — X, letxe X
(folgoh))(z) = f((geh)(z))
f(g(h(z)))
(fog)(h(z))

((fog)oh)(z)
= fo(goh)=(fog)oh.

§2.1 Dihedral Groups

Definition 2.1 (Dihedral groups Ds;,)
Let P be a regular polygon with n sides and V its set of vertices. We can assume

V = {Z*/" .0 <k < n}
(nth roots of unity in C). Then the symmetries of P are the isometries (i.e. distance

preserving maps of C that map V to V).

We will show that: for n > 3 the set of symmetries of P, under composition, form
a nonabelian group of order 2n. This group is called the dihedral group of order 2n
and denoted Ds,,.

Warning - sometimes Dy, is denoted D),
We have already met Dg in Example 1.8.

Consider Dyg!

Letr: P —> P
z > 2T
t:P— P
Z—=Z
These are both isometries
r(2) = r(w)] = [T/ — il

The subgroup generated by r? and ¢ includes the identity, as they are self inverses so no need for inverses,
and by closure 7’ = ¢r°t and so it is a subgroup of order 4.

16



(M 3 3 2 2 ) I y
|
Z ! L 3 \1 L < 2y
\ <~ /
]
- - — —-t N /
\ RS
3 ' H | 2 2 3 oy |

= |2z = )

= |z —w|

t(2) — t(w)* = |z — @’
=Z—-w)(z—w)

= |z — w|?

= [t(2) — t(w)| = |z — w|

Note, " = id = identity

— = pnd

t*=id
— t 1=t
txrsz=e Mz =rlitxs

— tr=r"Y

We show that the set of symmetries of P is precisely {e,r, T L A S L 3

rotations reflections
Then this set under composition of functions gives the group Do,,.

Let f be a symmetry of P. Then f(1) = 2™/ for some k (f(1) is mapping 1 to some
vertex, so some element of V).

— ko f (1)=1

g, symmetry of P fixing 1

17



g=rtof

So, g(e?™/m) = 2T/ or ¢727/™ as the vertices next to 1 stay next to it.

If g(e2™/™) = ¢2™/" then g fixes the points 1 and ¢>™/™. Also g interchanges the vertices
of P so fixes P’s centre of mass

1 n—1 )
- Z 627mk/n -0
" =0

So g fixes 0,1 and e2™/" — ¢g=id = f =rk.

Ifg(€27ri/n) — e~ 2mi/n then t Og(BQM/n) — e2mi/n

t o g(e2mi/m) — 2w/
tog(l)=1
tog(0)=0

N tog=id
= tor*of=id
— f= rkot1
=rFot
Algebraically we write,
Dy, = rt |rM=e, t?=e, trt:r_1>
ger?rgors relations

Finally, Dy = (5 and D, is Example 1.7. Both are abelian. Also D, exists.

§2.2 Symmetric Groups

Definition 2.2 (permutation)
Let X be a set. A bijection

f: X=X

is called a permutation of X. Let Sym X denote the set of all permutations of X.

Proposition 2.1
Sym X is a group under composition of functions. It is called the symmetric group

18



on X.

Proof.
e closure - See Lemma 1.2 (Number’s and Sets).
e identity, define 1(z) =2 V€ X.

e Let f € Sym(X). As f is a bijection, f~! exists and is a bijection and satisfies
foft=uv=f"1lof.

e composition of functions is associative.

O

Notation. Suppose X is finite, | X| = n. Then we often take X to be the set {1,...,n}
and we write S, for Sym X. We call S,, the symmetric group of degree n.

Notation (Double row notation). We’ll use double row notation (for now).

If o € S,, write

Example 2.1
1 2 3
(2 3 1)653
1 2 3 4 5
<2 31 4 5)655
Example 2.2
Composition:
(1 2 3>O<1 2 3)_“ ; f 3 ,
2 31 2 1 3 3 9 1
(1 2 3
3 21
or:

19



> L. >

Example 2.3

S1 = { G)} = {u} trivial group
1 2 1 2
s=13)6 1))

> ({£1}, X) = Cs

(
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
{(1 2 3)’(2 3 1)’(3 1 2)’(1 3 2)’(3 2 1)’(2 1 3)}

Dg

S3

|

Remark 8.
i. |Spl=n!
ii. Forn > 3 S,, is not abelian. Consider
(1234...n><1234...n>
2 3 1 4 ... n)’ 3 2 4 ... n
They don’t commute in S3 so they won't in S,.

iii. Dy, naturally embeds in S,. e.g. Dg < Sy (isomorphic to a subgroup)

(1 2 3 4 ‘o 1 2 3 4
"“l234 1) \43 21
‘Double row notation is cumbersome and hides what’s going on, so we introduce cycle
notation’.

Definition 2.3 (Cycle notation)

Let ay,...,a; be distinct integers in {1,...,n}. Suppose o € S,, and

a(ai):aiﬂ 1§1§]€—1

20



U(ak) = a1

and o(z) = 2 V x € {1,...,n} \ {a1,...,ar}. Then o is a k-cycle and we write

o= (a,as,...,a;). e.g.
(123
= l2 31

is the 3-cycle (1 2 3) ie. 1+— 2,2+~ 3,3+~ 1and all of numbers map to them-
selves.

Remark 9.
i.
(CLl,CLQ, CIEIEIES ak) = (aka ai,az, ... 70’/{:—1)
We usually write the smallest a; first.
ii.
1
(a1,a9,...,ar)"" = (a1, ak, ag—1, ..., a02).

iii. o(o) = k, o is like the rotations of k points.

&,

iv. a 2-cycle is called a transposition.

Definition 2.4 (Disjoint cycles)

21



Two cycles 0 = (ai1,...,a;) and 7 = (b1,...,b;) are disjoint if {a1,..., a5} N
{bl,...,bk}zg.

Lemma 2.1

If o, 7 € S, are disjoint then o7 = 70

Proof. If z € {1,...,n}\{a1,...,ap}U{b1,...,bi}, (coT)(x) = 0 (7(z)) = (To0)(x).
Suppose1 <i <k -1

(0 o7)(a;) = o ((as))

= o(a;) = ait1
(Too)(ai) =7 (o(as))

= 7(ai+1) = ait1

And oo 7(ag) = a1, Too(ag) = aj.

Similarly for b; 7 0 o (bj) = o o 7(b;)

Thus o o 7 and 7 o o agree everywhere = co7 =7oo0. O

'(5:3"2133';32-1 5)=(3 4 5)(1 2)

However this is not necessarily true if two cycles are not disjoint.

Example 2.5
o=(1 2 3),7=(2 4
oor(l)=0(1) =2
co7(2)=0(4) =4
co7(3)=0(3)=1
coT(4)=0(2)=3
cor=(1 2 4 3)
ButToa—(l 4 2 3)
Example 2.6

22



(1 23)(23)=( 2)(3)

= (1 2) suppress 1-cycles.

Theorem 2.1

Every permutation can be written as a product of disjoint cycles (in an essentially
unique way).

Example 2.7

Q
Il

1 2
(5]
(12

Proof. Letay € {1,2,...,n} = X. Consider a,o(a1),0?(ay),. ..
Since X is finite 3 minimal j such that 07(a;) € {a1,0(a1),0%(a1),...,07 " (a1)}.
We claim: 0/(a1) = a;. Since if not

ol (ar) = a'(ar), j>i>1

= o/ 7"(a1) = a1 ¢ of minimality of j.

So (a1,0(a1),02(a1),...,07 " (a;)) isa cycle in o.

If3be X\ {a1,0(a1),0%(a1),...,07 1 (ar)}. Consider b, o(b), ...

Note (b, 7 (b), a2(b), ..., a7 ~1(b)) is disjoint from (ay,0(a1),0%(ay),...,09 " (a1)) be-
cause o is a bijection.”

Continue in this way until all elements of X are reached. O

“If 0% (b) = 07 (a1) then b = 07 ~*(a1) which contradicts b € X \ {a1,0(a1),0%(a1),...,0 *(a1)}.

Lemma 2.2

Let o, 7 be disjoint cycles in S,,. Then o(o7) = lem{o(0), o(7)}

Proof. Let k = lem{o(o),0(7)} so o(o) | k and o(7) | k. Then

(o7)¥ =or0T...0T

— o*r* Lemma 2.1

23



=e-e Lemmal.5
=e

= o(o7) |k Lemma 1.5 (1)

Now suppose o(c7) = nso (67)" = e = o"1" = e. But o,7 move different
elements of X — o¢" =e¢, 7" =e. By Lemma 1.5

= o(0) |nand o(7) | n
= k =lcm{o(0),0(7)}
| = ofor) 2)
eq. (1), eq. (2) = o(o7) =lem{o(0),0(7)}

Proposition 2.2
Any o € S, (n > 2) can be written as a product of transpositions.

Proof. By Theorem 2.1 it is enough to show a k-cycle can be written as a product of
transpositions.

@ o o a)=lo @)(o w)ofos oo o)

Example 2.8
(123845 =(12)(23)(3 44 s
not unique.

Definition 2.5 (Sign of permutation)

Let o0 € S, (n > 2). Then the sign of o, written sgn(c), is (—1)*, where k is the
number of transpositions in some expression of o as a product of transpositions.

Lemma 2.3

24



The function

sgn : S, — {£1}
o — sgn(o)

is well defined.
ie.ifoc =7 ...7, = 7|...7, with 7; and 7/ transpositions then (—1)* = (—1)°.

sen((1 2 3 4 5))=(-1)"=(-1)°
=1

Proof. Let c(0) denote the number of cycles in a disjoint cycle decomposition of o
including 1-cycles, so c(id) = n.

Let 7 be a transposition. Claim: ¢(o7) = ¢(0) £1 =c¢(0) + 1 mod 2.

Letr = (k 1).

2 cases:

i. k,!llie in different cycles of o:

(k: ap ... ar>(l by ... b)(k: l):(k by by ... by | ap ... ar)
= c¢(o1)=¢c(0) — 1

ii. i k,lliein the same cycle in o:

(kz ar ... ap 1 b ... b)(k: l):(k by by ... bs)(l ap ... ar)

= c(o1)=c(o)+1

Assume

oc=1idm ... 7,

=idr ... 7
— ¢(0)=n+a mod 2
=n+b mod?2

= a=b mod 2
— (-1 = (-1

25



Aside: Subgroup Lattices

Subgroup lattice of Dg = {e,r,72,t,rt, 1%t}

We put the largest subgroups at the top and work our way down.

Theorem 2.2
Let n > 2. The map

sgn @ (Sn,0) = ({£1}, %)
o — sgn(o)

is a well-defined non-trivial (doesn’t just map to identity) homomorphism.

Proof.
e We know its well-defined by Lemma 2.3
e sgn ((1 2)) = —1, so non-trivial
e homomorphism:

Let a, 3 € S, with sgn(a) = (=1)¥, sgn(B) = (~1)!. So 3 transpositions 7; and 7/
such that & = 71 ...7; and 8 = 77 ... 7/. This implies

af=T71...Tk7Ty ... T}

—> sgn(ap) = (~1)*
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Definition 2.6
o is an even permutation if sgn(o) = 1 and an odd permutation if sgn(c) = —1.

Corollary 2.1

The even permutations of S, (n > 2) form a subgroup called the alternating group
and we denote it by A,,.

Proof.

eid=(1 2)(1 2)eca4,

° sgn(o) =1 = sgn(p)
= sgn(op) = sgn(o) sgn(p)
— 1l
by Theorem 2.2

® 0 =71 ...7; where 7; are transpositions. Theno™! = 7,... 71 = sgn(o) =
sgn(o—)

associativity is inherited

Example 2.9

A4:{e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1 2 3),(1 3 2),
(1 2 4),(1 4 2),(2 3 4),(2 4 3),(1 3 4),(1 4 3)}
Ren;ﬂ r|A1:|).: ISl — 2 (will be proved later on)

ii. cycles of even length are odd and cycles of odd length are even.

iii. A, = ker(sgn), hence a subgroup (q9 - sheet 1).
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§3 Cosets and Lagrange
Definition 3.1 (Cosets)

Let H < G and g € G. The left coset gH is defined to be {gh : h € H}. Similarly the
right coset Hg = {hg : h € H}

Example 3.1

{e (1 2 3),(1 3 2),(1 2),(1 3),(2 3)}
H={id, (1 2 3),(1 3 2)} =4

{(1 2),(1 2)(1 2 38),(1 2)(1 3 2)}
{(t2).023).0 3}

H (since H is a subgroup)

2

(12 3)H

Note, H U (1 2) H =55

Lemma 3.1

Let H < G and g € G. Then there is a bijection between H and gH. In particular if
H is finite then |H| = |gH|.

Proof.

Define 6, : H — gH
h +— gh.
We show 0, is a bijection.
Surjectivity: if gh € gH then §,(h) = gh.
Injectivity:
0y(h1) = 04(h2)

ghi = ghy
= hy1 = hs (cancellation law)
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Lemma 3.2

The left cosets of H in G form a partition of G i.e.

i. each g € G lies in some left coset of H in G.

ii. ifaH NbH # @ (for some a,b € G) = aH = bH.

H gt | %t

Proof.
i.gegHasec H

ii. Suppose c € aH NbH.
Claim: aH = cH = bH.

Now ¢ € aH so ¢ = ak for some k € H.
= cH ={ch:he H}
={akh:he H} CaH.
Similarly, a = ck~! € cH
— aH C cH.

SoaH = cH.
Similarly cH = bH

Example 3.2
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Sn= A u(l 2)An

even elements odd elements

Lemma 3.3
Let H < G,a,be G. ThenaH =bH <= a 'be H.

Proof. (= ):
bebH = aH
— b=oahforsomeh e H
— ab=heH
(=)
Suppose a b=k € H
— b=ak € aH
alsob € bH.
— aH =bH
by Lemma 3.2 O

Theorem 3.1 (Lagrange's Theorem)
Let H be a subgroup of the finite group G. Then the order of H divides the order

of G (ie. [H| | |G]).

Proof. By Lemma 3.2 G is partitioned into distinct cosets of H, say G = g1 H UgoH U
...UgrH (say g1 = e).
By Lemma 3.17
lgH| = |H| 1<i<k
= |G| = [H]k

“You would need to prove these lemma’s in an exam q.
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Definition 3.2 (Index of a subgroup)
Let H < G. The index of H in G is the number of left cosets of H in GG, denoted

|G : H].
Remark 11.

i. If Gis finite, |G : H| = % But we can have |G : H| finite, even if G and H are

infinite, e.g. Z and nZ where |G : H| = n.
ii. We write (G : H) for the set of left cosets of H in G.

From Dexter’s Notes:

The k in Lagrange’s Theorem is |G : H|, giving item 1. “The hard part of this proof is to
prove that the left cosets partition G and have the same size. If you are asked to prove
Lagrange’s theorem in exams, that is what you actually have to prove.’

Corollary 3.1 (Lagrange's Corollary)

G is a finite group, g € G. Then o(g) ‘ |G|. In particular, ¢/¢l = e.

Proof.
Note (g) = {e,g,...,g" '} where o(g) = n.
Then o(g) = | (g) | ‘ |G| by Lagrange’s Theorem
= g'G‘ = e by Lemma 1.5
OJ
Corollary 3.2

If |G| = p for some prime p, then G is cyclic.

Proof. Lete # g € G. Then {e} # (g) < G. By Lagrange’s Corollary

L# (gl |IGl=p
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i.e. G cyclic.

Definition 3.3 (Euler’s totient function)
Letn € Nand p(n) = {1 <a < n: hcf(a,n) = 1}|.

Example 3.3

Theorem 3.2 (Fermat-Euler Theorem)

Letn € N, a € Z and hcf(a,n) = 1.
Then a?™ =1 (mod n).

We can prove this by using Lagrange, but first we need to set it up.
Letn € N,

Rp=1{0,1,...,n—1}
R} ={a € R, : hef(a,n) =1}

Notation. n € Z then w € R,, such that u = u (mod n).

Define x,, to be multiplication mod n.
Claim: (R}, x,,) is a group.

Closure:
hef(a,n) =1 = hef(b,n)
= hcf(ab,n) =1
= hcf(ab,n) = 1
Identity =1

Associativity is fine.
Inverses: Let a € R}, hef(a,n) =1

= Ju,v € Zs.t. au+ vn =1 (Bezout’s Theorem)
= au=1 (modn)

Then € R} is a~! as a~! has an inverse a which implies (a=1,n) = 1.
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Proof. Note |R}| = p(n).
a=a (modn), a€ Ry
By Lagrange’s Corollary

a?™ — il — 1 ¢ R*

— ™ =1 (mod n)
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§4 Normal Subgroups, Quotient groups and Homomorphisms

Given a group G, subgroup H of G and the set of left cosets of H in G, (G : H). We
would like to define a group operation on the cosets o, so that ((G : H), o) is a group.
Would like:

(9H) o (kH) = gkH.

When does this work? Consider gHkH if Hk = kH then we get gk HH = gkH.
This motivates the following definition.

Definition 4.1 (Normal subgroup)
A subgroup K of G is called normal if gK = Kg for all g € G. We write K < G.

K={id, (1 2 3),(1 3 2)}<5
(1 2)k={(1 2),(2 3),(1 3)}=K(1 2)
(1 8)k=K(1 3)
(2 3)K=K(2 3)
(1 238)k=K=K(1 2 3)

But H = {1, (1 2)} is not normal in

(1 3)H:{(1 3),(1 2 3)}
H(1 3)={(1 3),(1 3 2)}

Proposition 4.1
Let K < G. TFAE (The following are equivalent):

i gK=Kg VgeG
ii. gKgo'=K VgeqG
iii. gkgl e K VkeK, geG
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Proof.
(1) = (i)
gKg ' ={gkg™' : k€ K}
= (gK)g "
= (Kg)g~*

() — (i)
W) = @
Forany k€ K, g€ GI kK € Ks.t. gkgt =k

= gk=kKge Kg
— gK C Kyg

Similarly g~ 'kg = k” for some k" € K

= kg = gk”
— Kg CgK
= gK = Kgy.

Example 4.2
e {¢} IG, GLG.

e If G is abelian, all subgroups are normal. Sinceif k € K, g € Gand K < G
then gkg~ ! = g9 'k =k € K.

e Kernels of homomorphisms are normal subgroups (Sheet 1, q9) — A, <
Sy, since A,, = ker sgn

o Doy, = r,t |rt=e, t> =e, trt =1 ). Then (ry < Doy,
~—
generators relations

Clearly ririr=" =17 € (r).
Also, (r't)rd (rit) ™! = ritritr
= rirIttrtas tr® = r ekl = R

=r7 e (r).
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Or use the following lemma.

Lemma 4.1
If K < G and the index, Definition 3.2, of K in GG is 2, then K < G.

Proof.
G=KUgKforanyge G\ K
as gisin gK butnot K so gK # K
= K U Kgby Lemma 3.2
as gisin Kgbutnot K so Kg # K

— gK =KgVgeG, asif g € K then wejust get K = K.

Theorem 4.1

If K < G, the set (G : K) of the left cosets of K in G is a group under coset multi-
plicationi.e. ¢K o hK = ghK.

This group is called the quotient group (or factor group) of G by K and denoted
G/K.

Proof. We need to check that coset multiplication is well defined.

ie. gK = gK
and hK = hK
then ghK = ghK.

By Lemma 3.3,

gK =K = § lge K
hK =hK = h™'he K
Now § lg e K

— h 57 lgh € Ksince K < G
— (A 'h)(h Y9 gh) e K
— h'glghe K
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— ghK = jhK by Lemma 3.3.

So coset multiplication is well-defined. Group axioms now follow easily.

e By construction coset multiplication is closed as ghKK € (G : H) for g,h € G.
e Identity given by eK = K
o (9K) ' =g'K

e Associativity holds since it does in G, to check: (¢KhK)IK = (gh)lK =
g(hl)K = gK (hKIK).

]
Example 4.3
Sutda = ({(t 2)4.}.9)
= (.
ii. Dg = (a,b:a*=e=10% bab=a"1)
Let K = {1,a?}.
Claim: K < Dg.

(a'b)a’®(a'b) ™! = a'ba’ba™
=a'a=2bba"" as ba® = a"tba = a~?b
=a 2’ e K
ala’a"' = a® € K.
|Dsl/|K| =4 = [(Dg : K)|.

4 distinct left cosets:

K =1{1,a*}

aK = {a,a’}

bK = {b,ba*} = {b,a’b}
abK = {ab, aba®} = {ab, a®b}.
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o K aK bK abK

K K aK bK abK
aK | aK K abK bK
bK | bK abK K aK
abK | abK bK aK K

Note aKaK = a?K = K This is isomorphic to Example 1.7.

iii. Recall the subgroups of (Z,+) are precisely the groups (nZ,+) where n €

N U{0}, nZ = {nk : k € Z}. Since (Z, +) is abelian, all subgroups are normal,
nZ 1 7.
Suppose n = 5, cosets given by,

5Z = {5k : k € Z}
1+5Z={1+5k:keZ}
2+ 5Z = {245k : k € Z}
3+5Z={3+5k:keZ}
4+5Z={4+5k: keZ}.
(1+5Z) + (2 +5Z) = 3 + 5Z.
(3+5Z) + (44 5Z) = 2 + 5Z.

R ~ a
Claim: (Z/5Z, o )= ({0,1,2,3,4}, +5)
coset’addition’

We define amap 0 : n + 5Z — mwheren =7 mod 5and @ € {0,1,2,3,4}.
Well-defined map:

ifn+5Z=m+5Z
— —m +n € 5Z by Lemma 3.3
= —-m+n=0 (mod5)
= n=m (mod 5)
— n

m
homomorphism:

0 ((n+5Z) + (m+5Z)) = 6(n+m + 5Z)

_l’_
=n+5m
= f(n + 5Z) + 0(m + 5Z).

In general (Z/nZ,0) = ({0,1,...,n — 1}, +,).

38



Tt is coset ‘addition’ as it is abelian

Recall the definition of a homomorphism, Definition 1.10,
Im(0) = {0(g) : g € G} < H (Lemma 1.3). ker(f) = {g € G : 0(g) = e} < G (Sheet
1).

Theorem 4.2 (1st Isomorphism Theorem)
Let G, H be groups and 6 : G — H a group homomorphism. Then

Imo < H
kerf < G
and G/ ker § = Im#6.

Definition 4.2 (Simple group)
A group is called simple if its only normal subgroups are {e} and G, e.g. C;, where
p is prime.

Aside

Definition 4.3
Suppose f: A = B

i. f is injective (one-to-one) if a1,a2 € A, f(a1) = f(a2) = a1 = ag (each
element of A maps to a different element of B).

ii. f1is surjective (onto) if given b € B 3 a € A such that f(a) = b (every element
in B is ‘hit’).

iii. f is bijective if f is both injective and surjective.

Proof (1st Isomorphism Theorem). Let K = ker 6, we need to construct an isomorph-
ism

¢:G/kerf — Im@
gK — 0(g).
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Need ¢ well-defined:

Suppose gK = hK
— h~!g € K see Lemma 3.3
== O(hflg) =eq
( )"'0(g) = ep since # is a homomorphism
0(g) = 0(n)
(gK ) = p(hK)

Need ¢ to be a homomorphism:

p(gKhK) = ¢(ghK)

0(gh)

0(g)6(h) since 6 is a homomorphism
o(gK)p(hK).

¢ surjective: If 0(g) € Im 6 then ¢(gK) = 60(g).

¢ injective: Suppose ¢(gK) = ¢p(hK)

Suppose p(gK) = ¢(hK)
= 6(g) =0(h)
= 0(h)"'0(g) = en
O(h1g) = ey
— hlgeK
= gK =hK

O]

Remark 12. By the 1st Isomorphism Theorem, Im 6 = G/ ker 6, a homomorphic image of
G is isomorphic to a quotient of G.
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§4.1 Examples

Example 4.4

sgn : Sy, — ({£1}, %)
o — sgn(o).
Im(sgn) = ({+1}, x)
ker(sgn) = A,
= Sp/An = ({1}, x) =2 Co
= |4,| = |52”|

Example 4.5

<>
w
N

Example 4.6
Recall example 1.10 and 1.14.

GLy(R) = {2 x 2 matrices with entries in R, det # 0}.
det : GLy(R) — (R\, {0}, x)
M +— det(M)
det(AB) = det Adet B so is a homomorphism.

Imdet = (R\ {0}, x)
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since det 1... =a R\ {0}
."'1
ker det = SLa(R) = {2 x 2 matrices with entries in R, det = 1}.
— SLy(R) < GLo(R)

and GLy(R)/SLa(R) = (R \ {0}, x)

Example 4.7
0:(Z,+)— ({0,1,...,n—1),+5)
n—mn
ker 6 = nZ.
Lemma 4.2

Given K < G, the quotient map q : G — G /K with g — g¢K is a surjective group
homomorphism.

Proof. q(ab) = (ab)K = aKbK = q(a)q(b). So ¢ is a group homomorphism. Also
forall aK € G/K, q(a) = aK. So it is surjective. O

Note that the kernel of the quotient map is K itself.

Lemma 4.3

A homomorphism 6 : G — H is injective iff ker 6 = {eq}.

Proof. ( = ): Suppose 0(g) = eg = 0(eq). So injectivity = g = eg.

(=)

0(g) = 6(h)
= 0(h)"'0(g) = en
— O(h'g) =ey
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— h7lg € kerf = {eg}
= hlg=ecc
= h=yg.

Recallif N 1 G,g e G,ne N
— gng 'eN
= gng ! =nforsomen € N

= gn = ng.

This allows us to reorder our elements and helps in proving the following lemma.

Lemma 4.4
i. Let NI G,H<G.Then NH ={nh:ne€ N,he H} <G.

ii. Let N < G,M < Gthen NM < G.

Proof.
i. Closure, nh,nh € NH

n hm h = nihh € NH

S
&=

id=e=eec NH
inverse:
(nh)™! =h1n™t

— ah~! for some A € N.
e NH

ii. we need to check normality

g(nm)g~" = gng~' gmg~' € NM.
—
EN eM
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§5 Direct Products and Small Groups

§5.1 Direct Products

Definition 5.1 ((External) direct product of groups)

Let H and K be groups. We can construct the (external) direct product, H x K, with
aset {(h,k): h € H, k € K} and an operation:

(h1,k1) * (ho, k2) = (h1 g ho, k1 *k k2)
= (hiho, kiks)

i.e. component wise multiplication. Then (H x K, ) is a group

Proof. closure: His a group = hihy € H,Kisagroup = kiky € K
identity: (em, ex)

inverse: (h,k)~! = (b1, k71)

associativity since group operation in both H and K are associative. O

Remark 13.
1. If H and K are both finite, |H x K| = |H||K]|.

2. H x K is abelian iff (hl,kl)*(hg,kg) = (hg,kg)*(hl,k‘l) VY hi,ho € H ki,kos € K
iff (h1he, ki1ka) = (hahi, kak1)
iff h1h2 = h2h1 and k:lk?g = k?gk‘l
iff H is abelian and K is abelian.
3. H={(hyex) :he H} <Hx K
K={(eg,k): ke K} <HxK

Example 5.1
1.

CQ X CQ = <£L‘> X <y>
={e,z} x{e,y}

elements : (e, e), (z,¢), (e,), (z,y)
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o |(ee) (ze) (ey) (,9)
(e;e) | (e;e) (w,e) (e,9) ()
(z,e) | (z,e) (e,e) (z,9) (e,9)
(e,9) | (&,y) (z,y) (e,e) (z,€)
(z,y) | (z,y) (e;y) (x,e) (ee)

This is the called the Klein 4-group and is = to Example 1.7.
Note o ((x,¢e)) = o((e,y)) = o((x,y)) = 2. So Cy x Cy 2 Cy, as there is no
element of order 4.

2. However, C5 x C3 = Cg (Sheet 2, qn 10).

Lemma 5.1
Let (h,k) € H x K where H, K are groups. Then o ((h, k)) = lcm (o(h), o(k)).

Proof. Letn = o((h,k)) and m = lcm (o(h), o(k)).
Then ™ = ey, k™ = ex by Lemma 1.5.
So (h, k)™ = (h™, k™)
= (en, ex)
= n | m by Lemma 1.5.
Also, (h, k)" = (h"™, k")
= (en, ex)
= o(h) | nand o(k) | n by Lemma 1.5.

O]

Thus we know when C,,, x C,, = C),,, (Sheet 2, qn 10). Recognising when a group can
be written as a direct product of subgroups is trickier.

Proposition 5.1 (Direct Product Theorem)
Let G be a group with subgroups H and K, if:

1. each element of G can be written as hk, forsome h € H, k € K,
2. HN K = {e}
3. hk=kh VheH, ke K
Then G = H x K and we call G the (internal) direct product of H and K.
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Proof.

Letf0: Hx K — G
(h,k) — hk.

¢ is a homomorphism:

0 ((h1, k1) (he, k2)) = 0 ((h1he, k1k2))
= hihokiks
= h1kihoks by Item 3
= 0 ((h1,k1)) 6 ((h2,k2))

¢ is injective:
0 ((h1,k1)) = 6 ((h,k2))
hiky = haks
hy'hy = keky' € HN K = {e} by Item 2
— hi1 = hoand k1 = ko
So (h1, k1) = (ha, ka)

¢ is surjective by Item 1.
So 6 is an isomorphism as required. O

Remark 14. There are alternative equivalent definitions of internal direct product. G is
the internal direct product of subgroups H and K if:

1" HJIG, KLG
2. HN K = {e}
3. HK =G
Proof. We need to show Item 1,2,3 <= Item 1’,2/,3".

(=) weshow K < G.
Letk € K, g = hi1k1 € G by Item 1.

gkg™' = hy kikky Ryt
N—_——
keK
=k € Kby Item 3

Similarly H < G.
And Item 1 = Item 3.
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(«<=) need to show Item 3.

h € H,k € K consider
h='k~'hk € H, since H < G
N——
€H
€ K, since K <G
— h'k"'hk = HN K = {e} by Item 2’
— hk =kh

Example 5.2
G = (a) = Cy5.
Cs = (a®) = H < G (as G is abelian).
C32(a°) = K 4G.
HNK =a'®™" = {e}
aF = (a®)?(a®)* € HK
— (152K x HZC(C3x(Chs.

§5.2 Small Groups

Recall Dy, the symmetries of a regular n-gon, generated by

Pz 2T
t:z—7Z
elements of
2 n—1 n—1
Doy, ={e,ryr®,...,r" bt e T )
rotations reflections

Lemma 5.2
Now suppose G is a group, n > 3, with |G| = 2n, and 3 b € G with o(b) = n and
a € G,o(a) =2and aba = b~!. Then G = Dy,

Proof. Note (b) < G since of index two, Lemma 4.1.
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So G = (b) U (b)a

= {e,b,...,b"_l,a,ba,

Furthermore
ab="b"ta
— ab® = (ab)b*!
— pLlgpk-t
= b 2ab*?
=bFq
So (b*a)(b*a) = b*b aa
= €.
We can check
0 : Dgn — G
r—b
t—a

is an isomorphism.

§5.2.1 Classifying groups of small order

Lemma 5.3
If|G]=1,G={e}

Lemma 5.4

Also a ¢ (b), since aba = aab =bas a € (b) = ab = ba.

b al

If |G| =2 = G = Oy, as we have identity and an another element which
must be a self inverse or we can prove by Lagrange’s Corollary.

If |G| =3 = G = C3 by Corollary 3.2 (3 is prime).
If |G| =5 = G = C5 by Corollary 3.2 (5 is prime).
If |G| =7 = G = C7 by Corollary 3.2 (7 is prime).

If |G| = 4, G is isomorphic to Cy and C x C3, both abelian.
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Proof. By Lagrange’s Theorem, if 1 # g € G then o(g) | 4.

If3geGstoo(g) =4
— GgC4

Suppose not, then let

l#a€G = o(a) =2
= G is abelian (Sheet 1, Q7)
— (yH = <a) <G@.

Letbe G\ (a), thenl1#be GsoCy = (b) IG.
Also, (a) N (b) = {e}.

Consider the element ab:

ifab=e = a=b"1=0b#¢.

ifab=a = b=-c¢t.

ifab=b = a=-¢ct.

So
G ={e,a,b,ab}
= (a)(b)
= (a) x (b) by Remark 14
= 02 X CQ.
]
Lemma 5.5

If |G| = 6, G is isomorphic to Cs and Dg == S3. Note Cs 2 Dg as Cj is abelian and
Dg is not.

Proof. Let1l # g € G = o(g) = 2,3 or 6 by Lagrange’s Corollary. If all non-
identity elements have order 2 = |G| is a 2-power ¢ (Sheet 1, Q7).

So3b € G, o(b) = 3 (Note if o(g) = 6 then o(g?) = 3).

C3 = (b) < G, RHS by Lemma 4.1 (since of index 2).

Leta € G\ (b),
= a® c (b).

As a(b) € G/(b) and |G : (b)| = 2, the group has order 2. So (a(b))? = a?(b) = e =
(b) by Lagrange’s Corollary. Then a? € (b) by Lemma 3.3.
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If a®> = b or b? then o(a) = 6,asif a®> = b,a® = aband if ab=¢,a = b~! € (b) ¢.
o(a) =6 = G =Cs.

Suppose a® = 1.
Also, aba~! = aba € (b) as (b) < G.

Ifaba '=e = b=c/f
=b = ab=1ba
= o(ab) =6
= G =(Cs.
= =0l

Soo(a) =2,0(b) =3,aba !t =b"! = G = Ds. O

Lemma 5.6
If |G| = 9, G is isomorphic to Cy and C3 x Cs.

Proof. We will show later that groups of order p? (where p is prime) are abelian, so
either G = (.

Or all non-identity elements have order 3 by Lagrange’s Corollary Choose e # a €
G,be G\ (a)

Lemma 5.7
If |G| =10 = G = Cyp or Dy (Sheet 2, Q12, use proof similar to order 8 not 6).

Remark 15. There are lots of groups of order 2*. e.g. 10 of order 16 and approximately
50,000,000,000 of order 219.

§5.2.2 Groups of order 8

Lemma 5.8
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If G has order 8, then either G is abelian (i.e. = Cg, Cy x Cy or Cy x Cy x C3), or G
is not abelian and isomorphic to Dg or g (dihedral or quaternion).

Proof. Consider the different possible cases:
e If G contains an element of order 8, then G = Cs.

e If all non-identity elements have order 2 = G is abelian (Sheet 1, Q7). Let
1+# a € G, then Cy = (a) < G, RHS as G is abelian.

Choose b ¢ (a),
(a,b) = {1,a,b, ab}
= (a) x (b) by Remark 14.

Choose c € G\ (a, b)

{b) x ()

e Now suppose 3 g € G,0(g) >2 = Ja € G,0(a) =4 (if we have o(a) =8,
then o(a?) = 4). Cy = (a) < G, RHS by Lemma 4.1 (since of index 2).
Letb € G\ (a)
= b? € (a).
(Same reasoning as in n = 6, alternative proof is b* € (a) or b*> € b(a), if
b? =ba" = b=a"#s0b®c (a)).
If > = a or a®
= o(b) =8 = G = (k.
Else b* = e or a*
Now bab~! € (a) since (a) < G
= a' for some i.
— b%ab? = b(bab 1) !
=ba'b™!
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bab~')" as (bab~')(bab~') = ba?b

i2

—~

But v? €

Q

a) = blab %=

—~

as b? = a™ so must commute with a.

— =1 (mod 4)
= i=%£1 (mod4).
- Wheni = 1 (mod 4), bab™! = a = ba = ab. So G = (a) U b{a) is
abelian.
+ If b? = e, then G = (a)(b) = (a) x (b) = Cy x Cy.
+ If b> = a2, then (ba™1)? = €. So G = (a,ba™ ') = Cy x Cs.
- Ifi = —1 (mod 4), then bab—! = a~L.
+ Ifb> = e, then G = (a,b: a* = e = b?,bab~! = a™!). So G = Dg by

definition.
+ If b2 = a?, then we have G = g, a new group called the quaternion
group.

To show all 5 groups are different, Cs has an element of order 8, Cy x Cy does not.
C4 x C5 has an element of order 4 whilst Cy x Cy x Cy does not have elements of
order 2 or 4.

Dy and Qg, Qs has 6 elements of order 4, but Dg only has 2, so non-isomorphic. [

§5.2.3 Realisations of (Jg

1. Qs = {£1, i, £j, +k}
withij:k,jk:i,ki:j
1= —k, kj:—z'ik:—j
i2 =7 L

2. soo<>{<< ) E ><<>1 ;)- o
) R B Gy Gy S

3. Qs = (a,b|a* =e,b? =a?,bab™ ' =a™ )
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§6 Group Actions

It is often easier to understand a group if it’s doing something, permuting elements,
rotating a square etc.

Definition 6.1 (Group action)

Let G be a group and X a non-empty set. We say that G acts on X if there is a
mapping

p:GxX =X
(9,7) = p(g,7) = g(x)
such that

0. ifg € G,z € X, then p(g,x) = g(x) € X (implied by notation, but something
we should check).

1. p(gh,z) = p(g, p(h,x)). shorthand: gh(z) = g(h(x)).
2. p(e,x) = z, shorthand: e(z) = x.

When G acts on a set it maps elements of X to X in a way that the multiplication of
G is respected.

Example 6.1

i. trivial action p(g,z) =2 Vz € X,g € G.

ii. Sy actson X = {1,2,...,n} by permuting the elements of X. e.g. S5 acts on
(1,28, 0= (1 2) €S3:0(1) =2,0(2) =1,003) =3. 7= (1 3) € 8
ro=(13)(1 2)=(1 2 3)

(to)(1) =2, 7(c(1)) =7(2) = 3.
Similarly subgroups of S, act on X.

iti. Dg = {e,r, 72,73 t,rt,r’*t, r3t} acts on the edges of a square.
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t(a)=c t(c)=a
t(b)=1»b t(d) = d.
r(a) = b.

Also acts on the vertices of a square.

| 2
| 3
#(1) = 4 t(4) =1
£(2) = 3 t(d) = 2

iv. G acts on itself by left multiplication. This is called the left reqular action

GxG— G
(9, k) — gk.

Check:
0. gk € G (by closure)
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p(gh, k) = ghk

Or in shorthand:
gh(k) = ghk
g(h(k)) = g(hk) = ghk.
2. ple,k) =ek =k.
v. We also have the G right reqular action

GxG—d
(g9.k) — kg™ .

(we need inverse for Item 1 to hold.)

vi. G acts on itself by conjugation
GxG—G
(9.k) = gkg™".
Check:
0. gkg=! € G (by closure)
1.
p(gh, k) = ghk(gh)™*
= ghkh™ g™ p(g, p(h, k)) = p(g, hkh™") = g(hkh™")g™"

2. p(e,k) = eke ! = k.

vii. Let N < G, then G acts on N by conjugation

GxN— N

(g,m) — gng™ .

0. gng~' € G'since N < G.
(1) and (2) as above.
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viii. Let H < G, then G acts on the set of left cosets, (G : H), if H in G. Called the
left coset action.

Gx(G:H)— (G:H)
(9,kH) — gkH.
0. gkH € (G: H)
1.
p(gh,kH) = (gh)kH = ghkH.

p(g,p(h,kH)) = p(g, hkH)
— ghkH

2. ple,kH) =ekH = kH.

Remark 16. Recall a permutation of a set X is a bijection of X, Definition 2.2. We have
commented that a bijection f : X — X has a 2-sided inverse,ie. 3g: X — X s.t.

foglx)=2 VzeX
gof(zx)=2 VzelX.
Conversely if f : X — X is a map with a 2-sided inverse then f is a bijection.

foglx) =2 VxeX = fissurjective, as f is mapping to all elements in X
gof(zr)=2 VxeX = fisinjective, as if f took two elements to the same place
then g wouldn’t be able to split them up.

Note 2-sided is necessary:

07— 7 V7 =7
T — 2 2¢ — x
20 +1—0

oY =id.

Lemma 6.1

Suppose the group G acts on the non-empty set X. Fix g € G, then the map

pg: X =X
z = p(g,) = g(z)

is a permutation of X, i.e. ¢, € Sym(X).
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Proof. Clearly ¢, is a map from X to X. We need to show ¢, is a bijection, enough
to show it has a 2-sided inverse.

Pg-1 0 pg(x) = g1 (p(g, 2))

plg~", plg,z))
g
Pl

g, x) since p is a group action, Item 1

1
€,x)
V.

Similarly, p, 0 pg-1(z) =2 Vz e X. O

Proposition 6.1
Suppose G acts on the set X. Then the map

®: G — Sym(X)
g = $g

as in Lemma 6.1, is a homomorphism.

Proof. We need to show ® is a homomorphism i.e. need

®(gh) = ®(g) o ®(h)

Le. Ygh = Pg 0 Pp.

Letz e X
pgn(z) = p(gh, )
= p(g, p(h,z))
= pgo ‘Ph(l')-
Thisis trueV z € X. O
Remark 17.

1. Proposition 6.1 gives us an equivalent definition of a group action. If G is a group
and X a set such that ® : G — Sym(X) is a group homomorphism, then

p:Gx X =X
(9,2) = ¢qy(x)

where ®(g) = ¢4, is group action.
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2. Using notation of Proposition 6.1, by 1st [somorphism Theorem
G/ker® =Im® < Sym(X).
Note

ker® = {g € G: ®(g9) =idx € Sym(X)}
={9€G:py(z)=p(g,2) =2VzeX}

< G, Kernels of homomorphisms are normal subgroups (Sheet 1, 99).

Le. The kernel of the homomorphism is all those elements of G that fix every
element of X, that act “trivially’”.

Definition 6.2 (Kernel of an Action)

The kernel of an action p : G x X — X is the kernel of the homomorphism ¢ : G —
Sym(X).

Definition 6.3 (Faithful Action)
An action of G on X is faithful if ker p = ker ® = {e}.

Example 6.2
The kernels of Example 6.1

1. trivial action - ker ® = G.

2. Syactson {l1,...,n} - faithful.

3. Dg acts on the edges of a square - faithful.
4. left regular action - faithful.
5

. conjugation-ker® = {g € G : gkg~' =k V k € G} = Z(G), the centre of G are
—_——

gk=kg
‘the elements that commute with everything’.

6. conjugationof N I G. ker® = {g€ g:gng ' =nVne N} = Cg(N), the
centraliser of N in G.

7. left coset action -
ker® ={ge€ G:gkH =kHVY k € G}

={geG:kgkc HVEk e G}
={geG:gckHk'VEc G}
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= () kHE
keG
= Coreg(H) 9 G

and Coreg(H) < H (we can set k = e).
—_———
core of H

Useful Note for exm sheet: If ker & = {e}, then G is isomorphic to a subgroup of
Sym(X), we write G < Sym(X). So if |G| 1| Sym(X)| then ker ® # {e}.

Theorem 6.1 (Cayley’'s Theorem)
Any group G is isomorphic to a subgroup of Sym(X) for some non-empty set X.

Proof. We take X to be G and consider the left regular action

GxG—=d
(g,h) — gh.

This is a faithful action as gh = h V h € G = g = e. Thus we have an injective
homomorphism

®: G — Sym(Q)

and G < Sym(G). O

Definition 6.4 (Orbit)
Let G’ act on a set X and = € X. The orbit of x € X is given by

Orbg(z) = {g(x) : g € G} C X.

Le. the set of points in X which = can be mapped to.

Example 6.3
The orbits of Example 6.1.

1. trivial action, Orbg(z) = {z}

2. Spactson{l,...,n}-Orbg(l) = X (we can get (1 a) which maps z to any a).
If H=((12)(345)) < S, actingon X = {1,2,3,4,5} then Orbg(1) = {1,2}
and Orbg(3) = {3,4,5}.

3. Dg acts on the edges of a square - Orbp,(a) = {a,b, ¢, d}.
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4. left regular action - Orbg (k) = G, since g = g(k™'k) = (gk~1)k for any g € G.
5. conjugation - Orbg (k)

Orbg (k) = {g(k) : g € G}

= {gkg ' : g € G}
= cclg(k),

the conjugacy class of k in G. If h € cclg (k) we say h and k are conjugate.

Definition 6.5 (Transitive orbits)
We say G acts transitively on X if for any « € X, Orbg(x) = X. Equivalently, if given
any pair x1,z2 € X 3 g € Gs.t. g(x1) = za.

So the left regular action is a transitive action.

Lemma 6.2

The distinct G-orbits form a partition of X

Proof. Letz € X, then z € Orbg(z) since x = ex.
Suppose z € Orbg(z) N Orbg(y), we show Orbg(z) = Orbg(z) = Orbg(y).
z € Orbg(z) = Jg € Gs.t g(x) ==

Suppose t € Orbg(z) = Fh e Gst h(z) =t
= t=h(g(z)) = (hg)(z)
= t € Orbg(z) = Orbg(z) C Orbg(x)
Similarly g(z) = 2
z=e(x)=(97"9)(x) =g '(2)
= Orbg(z) C Orbg(z2).

Thus Orbg(x) = Orbg(z). Similarly, Orbg(z) = Orbg(y). O

Remark 18.

1. We could have proved Lemma 6.2 by noticing that z; ~ z2if3 g € Gs.t. g(x1) = x2
is an equivalence relation.

2. Orbg(z)is G-invariant, i.e. g (Orbg(z)) C Orbg(z). Sinceify € Orbg(z),y = h(x)
for some h € G = g(y) = g(h(z)) = (gh)(z) € Orbg(x).

3. G is transitive on Orbg(z).

Let y, z € Orbg(x)
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y = g(z),z = h(x), for some g,h € G.
Then z = h(g~ ' (y)).

Definition 6.6 (Stabiliser)
Let G act on X and x € X. The stabiliser of x in G is given by

Stabg(z) ={g € G : g(z) = =}
CG.

i.e. all those elements in G that fix .

Example 6.4
The stabilisers of Example 6.1.

1. trivial action - Stabg(z) = G.

2. S,onX ={1,2,...,n}-Stabg(1) = Sp_1.

3. H=((1 2)(3 4 5))onX-Staby(1)=((3 4 5)).
4. Dy - Stabp, (b) = {e, ¢}

S

left regular action - Stabg(k) = {e}, gk =k = g=e.

6. conjugation -

Stabg(k) ={g € G: g(k) =k}
={geG:gkg" =k}

= {9 € G: gk = kg}
= Cq(k), centraliser of k in G.

ILe. all those elements of G that commute with &.

Lemma 6.3
Stabg () is a subgroup of G.

Proof.
o ¢(z) =x = e € Stabg(x).

. if g, h € Stabg(z)
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(gh)(z) = g(h(z))
= g(z)
=1z = gh € Stabg(x).

o g € Stabg(z)
g(z) ==
z=e(x)=(97"9)(x) = g (gz)
=g ()

= ¢! € Stabg(x).

e Associativity is inherited from G.

Remark 19. Recall, Proposition 6.1

¢ : G — Sym(X)
kerd={geG:g(x)=axVaeX}

= (") Stabg ().

Theorem 6.2 (Orbit-Stabiliser Theorem)
Let G be a finite group acting on a non-empty set X. Then Stabg(z) < G and

|G| = | Stabg(z)|| Orbg(z)|.

Remark 20. We actually prove that |G : Stabg(z)|, the number of left cosets of Stabg(z)
in G, is equal to | Orbg(z)|, a more general statement.

Proof. (G : Stabg(x)) is the set of left cosets of Stabg(z) in G. Consider the map

0 : Orbg(z) — (G : Stabg(z))
g(x) — g Stabg(z).

0 is well-defined:

9(x) = h(z) = h™'g(z) =2
— h7lg € Stabg(x)
= ¢ Stabg(z) = h Stabg(x) by Lemma 3.3
— 0(g(x)) = 0(h(z)).
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¢ is injective:
0(g(x)) = 6(h(x))
— g Stabg(x) = h Stabg(z)
—> h~'g € Stabg(z) by Lemma 3.3
— hilgz)==x
— g(x) = h(x).

¢ is surjective:

z) € (G : Stabg(z))
then g(x) € Orbg(x)
and 0(g(z)) = g Stabg(x).

Given g Stabg

—~~

Thus 6 is a well-defined bijection. O

§6.1 Application to Symmetry Groups of Regular Solids
Let S be a regular solid and V its vertices. The the symmetries of S are the isometries

(distance preserving maps) of R? or R? that maps S to itself. The dual is the solid with
vertices in the middle of each face of the input.

§6.1.1 Tetrahedron (self-dual)

T-= 3

%

faces are 4 equilateral triangles.

Let G be group of symmetries of 7, and X = {verticesof T} = {1,2,3,4}. Then Ja
homomorphism

®: G — Sym X = 54 Proposition 6.1

63



Note ker @ = {e}, if all vertices are fixed, then T fixed.
Consider Gt < G be the subgroup of all rotations. The elements of G are as follows:

Ly |
Figure 1: Rotation of 27/3, a 3-cycle (2 3 4), and 47 /3 gives (2 4 3).

There are 4 such axes, giving 8 rotations of order 3 (these are all the 3-cycles in Sy).

\

7

S

Figure 2: Rotation of 7, a double transposition (1 4) (2 3). We have one rotation for
each pair of axes and we have 6 axes, so 3 such double transpositions.

and identity,
— Gt Ay.

(only subgroup of order 12)

Now consider G (all symmetries). Clearly Orbg(1) = {1,2,3,4} = Orbg+(1).
Consider Stabg(1).

e Note if 3 vertices are fixed then T is fixed.
e Suppose vertices 1 and 2 are fixed

o Ifjust 1 is fixed we have order 3 rotation from before, o.
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-

reflection

Figure 3: reflection through 1,2 giving (3 4) = 7. We have such a reflection for each
of the 6 edges.

These are all elements in G

Stabg(1l) = (o, 7) = Dg
= |G| = | Orbg(1)|| Stabg(1)| Orbit-Stabiliser Theorem
=4x6=24
— G =8,

(consider the effects of o and 7 on the bottom face to see why (o, 7) = Dg).

Note Stabg- (1) = (o). Also (1 2 3 4) = (1 2)(2 3 4).

§6.1.2 Cube (dual to octahedron)

(- N

=

3 2'

Let G be the group of rotations of C. Then G* acts on set of diagonals X =
{DlaD27D3aD4}-
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If a rotation, o, that fixes all the diagonals, then ¢ = id. So we have an injective homo-
morphism

®:G" — Sym(X) = Sy.
Rotations:

e id

0

Figure 4: o rotation of 7/2 corresponds to (1 2 3 4) in action on diagonals. There
are 3 such axes giving 6 elements of order 4 and 3 of order 2.

19,

P
ﬁ\

N

0

Figure 5: o(p) = 3 corresponds to (2 3 4), we have 4 such axes giving eight elements

of order 3 (p, p?).

Le. GT = S;. Note Orbg+ (D1) = {D1, Dy, D3, Dy}. Stabgt (D1) = {p, 7'} or consider
G acting on vertex 1

| Orbg+ (1)] = 8
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gk

Figure 6: rotation of 7, o(7) = 2 corresponds to (1 3). There are 6 such axes

| Stabg+ (1)] = [(p)] = 3.
= |GT| = 24.

Now consider full symmetry group of C, call it G.

Consider action on faces F7, . . ., Fg, this yields an injective (or faithful) homomorphism
as fixing all the faces fixes everything.

¢ : G — Sym(F;) = S.
| Orb(F1)| = 6.
Stab(F1) = Dg. Consider the opposite face
= |G| =6x8=48.

So, action on diagonals is not faithful; 3 g € G g(D;) = D; 1 < i < 4but g # id. g can
swap vertex i with ¢/, the diagonals will stay unchanged however. Alternatively, label
vertices of C' as {(+1,+£1,+1)}, then

g: (I’,y,Z) = (—l', -Y, _2)'
If we label the faces of the cube like a dice (1 opposite 6, 2 opposite 5, 3 opposite 4) then
g= (1 6) (2 5) (3 4).
Then G = G x (g).
Proof.

G1 < G by Lemma 4.1 (since of index 2)
(9) < G commutes with all rotations
GT N {g) = {e}
G {g)| =48 = |G.
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O]

In fact, we have also proved that the group of symmetries of an octahedron is S4 x C5
since the octahedron is the dual of the cube. (if you join the centres of each face of the
cube, you get an octahedron)

§6.1.3 Dodecahedron (dual to Icosahedron) - Non examinable

Let D be the dodecahedron.

e 12 regular pentagonal faces
e 30 edges

e 20 vertices

Let G = group of rotations of D.
Let F' be a face of D.

‘ OI‘bGJr(F)| =12
| Stabg+ (F)| = 5 just rotating about face
= |G| =5 x 12 = 60 by Orbit-Stabiliser Theorem.

There are five cubes embedded in D.
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15 pairs of edges, 3 pairs per cube = 5 cubes.

G acts faithfully on cubes, giving us an injective map ® : Gt — S;. And |GT| =
60 = GT = A5 (Aj is the only subgroup of order 60 of S5). The smallest non-abelian
simple group comes up as the rotational group of a dodecahedron.

We can find the elements of A5

e Rotations through opposite faces - 5 cycles (6 axes, 4 elements per axis giving 24
elements).

e Rotations through opposite vertices - 3 cycles.

e Rotations through opposite edges - double transpositions (15 such).

§6.2 Another Application of Orbit-Stabiliser Theorem

Theorem 6.3 (Cauchy's Theorem)

Let G be a finite group and p a prime that divides |G|. Then there exists an element
in G of order p.

Proof. Let
X ={(z1,22,...,2p) : t122...xp = €,x; € G}.

Let H = (h : o(h) = p) = C}," acts on X as follows:

Hx X —>X
(h, (z1,22,...,2p)) = (22, 23,...,2p, 1)
in general
(hi7 (fL‘l,.’EQ, cee 7$p)) — (l‘l-"—i)‘r?-i-i? cee 7$p+i)

subscripts are taken modulo p.

Check this is a group action

0. T1T2...Tp =€

Ti41T244 -+« s Tpti = [(331.272 000 .Z‘Z')_l(l‘ll‘Q NN xi)]l’zﬁrll’pﬂ' e TpTIT2 . T
= (r122. .. xi)_lxle crp(TiTe .. x)

= (z122...2;) te(zr2e . .. 24)

€.
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1. W sy o 8) = (@B10mgy o o o )
— Wi(W (21, .. ., 2p))-

2. e(x1,...,xp) = hP(x1,...,2p)

= (x1,...,2p).

LetT = (x1,22,...,2p) € X. As distinct orbits partition X (Lemma 6.2)

== Z | Orby ()| = | X|.

distinct orbits
Note | X| = |G[P~! (choose 1, . ..,xp_1 then x, is determined, we have |G| choices
for each free variable).

p\\Gr:sphxr

:}p

Y. |Orby(2)| (3)

distinct orbits

But by Orbit-Stabiliser Theorem

| Otby (@) ] |H| = p
— | Orbg(z)| =1 or p.

Now, € = (e,e,...,e) € X and |Orbgy(€e)| = 1. So 3 at least p — 1 other orbits of
length 1 by (3). So37 € X st Orby(Z) =1 = T = (z,z,...,z) (has to look the
same after permutation) with = # e and 2P = e. O

"h ¢ G, H isjust a copy of Cp

§6.3 Conjugacy Action

GxG—=d
(g,h) — ghg™'.

Orbits are called conjugacy classes

cclg(h) = {ghg™" : g € G}

stabilisers are called centralisers

Ca(h)={g€ G:ghg™" = h}.
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Remark 21.
1. By Lemma 6.2 the conjugacy classes partition G.

2. By Orbit-Stabiliser Theorem, h € G
|G| = [Cq(h)|| ccla(h)|.

In particular (Cg(h) is a subgroup)

|cclg(h)] | |G-

3. If k € cclg(h) then o(k) = o(h).
Proof. Since k = ghg~! for some g € G, so
koB) = (ghg—1)e®)
_ ghoth g1

=€

= o(k) | o(h)

Similarly, h = g7tkg = o(h) | o(k). O

4. Recall the centre of GG is
Z(G)={9€G:gh=hgV heG}
<d@.

And Z(G) = () Ca(h)
heG

Note z € Z(G) < |cclg(z)| = 1.
Proof. If z € Z(G)
— cclg(z) ={gzg7! : g€ G}
1
99~ =2

= {z}

If | cclg(2)| = 1, note z = eze ™! € celg(z2). Sogzg™t =2V g € G. O

5. Let H < G, then H is normal iff it is a union of conjugacy classes (Sheet 3, Q3).
6. G is abelian iff G = Z(G).
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Proposition 6.2

Let p be a prime and G a group of order p". Then Z(G) is nontrivial, i.e. Z(G) > {e}
(not equal to).

Proof. Let G act on G by conjugation. Then the conjugacy classes of G partition G,
b= Udistinct conj classes CClg(x) by Lemma 6.2.

By Orbit-Stabiliser Theorem

|cdla(z)| j Gl ="

Either |cclg(z)| =1 or p | | cclg(x)|. By Item 4,

IGl= Y Jecg(z) + > | cclg(a)]

z€Z(G) distinct
conj classes

with p|| cclg ()|

Now p | |G|and p | RHS

= p| Y lecda(@)| =12(G)]
z€Z(G)

Lemma 6.4

Let G be a finite group and Z(G) the centre of G. If G/Z(G) is cyclic then G is abelian
(so G =Z(Q)).

Proof. Let Z = Z(G). G/Z is cyclic, so G/Z = (yZ) for somey € G. Let g, h € G.
Then ¢Z = y'Z for some i =—> g = y'z; for some z; € Z.

Similarly, hZ =y’ Z for some j = h = y’z, for some 23 € Z.

Now,

gh=y'z1y7 2
= yiyjzlzg as 21,20 € Z

=9y mu
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= yj Zzyi21
— ( is abelian.

Corollary 6.1

Suppose |G| = p? for some prime p. Then G is abelian and there are, up to isomorph-
ism, just two groups of order p?, namely C,> and C), x Cp,.

Proof. (Q10, Sheet 3). O]

Remark 22.
A group of order p™ for a prime p is called a finite p-group.
If all the elements have p-power order, G is called a p-group. E.g. Cp~ is the Priifer

group.

§6.3.1 Conjugation in 5,

Definition 6.7 (Cycle type)

Let o € S,, and write ¢ as a product of disjoint cycles including 1—cycles. Then the
cycle type of o is (n1,ne,...,n,) where ny > ng > --- > ni > 1 and the cycles in o
have length n;.

Noten =ni +ng +--- + ng.

Example 6.5

(1234066 7)=>1234(c67)(s)

— &
has cycle type (4, 3,1).
e € S5 has cycle type (1,1,1,1,1).

Theorem 6.4

The permutations 7 and ¢ in S, are conjugate in S,, (i.e. 3g € Sy, s.t. gng™! = o) iff
they have the cycle type.
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Proof. Suppose o has cycle type (n1,n2, .

o= (all a2 ... alnl) (azl a2
LetT € S,
Then

So

ror !l = (T(all) T(a12)

..,ng). Write

a2n2>...<ak1 ary ... aknk>.

™(an,))
(7‘((121) 7‘((122) 500 T(agnz)) 000 (T(akl) T(akQ) 500 T(aknk)) 5

So if two elements of .S, are conjugate they have the same cycle type.
Furthermore if  has the same cycle type as o, we can write
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™= (bn b12 coo b1n1> 0oo (bkl bkg bknk> o
Define 7(a;;) = b;j then m = 707 1. Thus 2 permutations of the same cycle type are
conjugate. O
Example 6.6
—il
(190 23)(1 4 =(¢2 3
L@ k)@ =0 k)
Consider Sy: Let x € Sy, recall
24 = |Sy4| = | cclg, (z)]|Cs, (z)| by Orbit-Stabiliser Theorem.
example member,z cycle type no. of sgn |Cg,(z)| Cg,(x)
e (1,1,1,1) 1 1 24 Sy
(1 2)3)) (2,1,1) 6 -1 4 {((12)34)2CyxC,
(123)(4) (3,1) 8 1 3 ((123)) =204
(12)(34) (2,2) 3 1 8 ((1324),(12)) = Dg
(1234) (4) 6 -1 4 ((1,2,3,4)) = Cy.



Corollary 6.2

The number of distinct conjugacy classes of .S, is given by p(n), the number of par-
titions of n into positive integers,i.e. n = ny +---+ng withny > ng > --- > ng, > 1.

However in A,, conjugation is less clear. Certainly
ccla, () = {gzg™ ' : g € A}
C{gzg™':g9€8,}=cclg, (v)

since A, < S,. So if two elements are conjugate in A,, they have the same cycle type.
But having the same cycle type in A,, does not guarantee being conjugate.

E.g. (12 3) is not conjugate to (1 3 2) in Ay.
If7(123)77 ! =(132)thenT = (12)or (32)or(13)e S\ Ay

Or consider

Ca, ((123)) =Cs, ((123)) N Ay
Cs, ((123)) = ((123)) < Ay
S0, Ca, ((1213)) = Cs, (123))
= Jccla, ((123))] = |C’A4|(J(?‘23)) by Orbit-Stabiliser Theorem
|54/2

G, ((123))]
_ ecls, ((123))
5 .
So the conjugacy class of 8 3-cycles in Sy splits into 2 conjugacy classes in Aj.

Key point Let x € A,,. If Ca, (z) = Cg, (v) = |ccla,(z)| = ml%ﬂ by Orbit-Stabiliser
Theorem.
If Cy, (z) < Cg, (x), then Cg, contains an odd permutation and |Cy,, (z)| = |Cs, NAy| =

9] (Q4, Sheet 2) —> |cela, (z)| = | celg, (z)].

A42
example member, z cycle type Ca,(x) size of ccl
e (1,1,1,1) Ay 1
(123) (3,1) ((123)) 4
(132) (3,1) ((132)) 4
(12)(34) (2,2) {e,(12)(24),(14)(23)} =2 Cy x Oy 3

Remark 23. The number of elements in S,, with k; cycles of length [ is given by

n!
I1; k! ke
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Think of cycles as trays, put in elements of X = {1,2,...,n}. This gives n! options, but
we’ve overcounted. Each cycle of length [ can be written [ ways, this given Ik factor.
Also k; cycle of length [ can be permuted in £;! ways.

Example 6.7
E.g. Number of cycles in S5 of type (- -)(- -)(-), so k2 = 2 and k; = 1.

5!
no. of = m =15
Or ( . )( ~), k?g = 1,]€2 =1
5!
no. Of = W = 20.
Let us consider S5, |S5| = 120.
example member,z cycle type mno.of sgn |Cg, () Cs;, ()
e (1,1,1,1,1) 1 1 120 Ss
(12) (2,1,1,1) 10 -1 12 {(12)) x Sym{3,4,5} = Cy x S3
(12)(34) (2,2,1) 15 1 8 (1324),(12)) = Ds
(123) (3,1,1) 20 1 6 ((123),(45)) = Cs
(123)(45) (3,2) 20 -1 6 K
(1234) (4,1) 30 -1 4 ((1234))
(12345) (5) 24 1 5 ((12345))
Now consider A5, |As| = 60.
example member,z  cycle type Ca, () | ccla, ()]
e (1,1,1,1,1) As 1
(12)(34) (2.2,1)  (12)34,(13)249) 15
(123) (3,1,1) ((123)) 20
(12345) (5) ((12345)) 12
(21345) (5) ((21345)) 12

Recall Definition 4.2, a group is simple if it has no non-trivial proper normal subgroups,
i.e. if the only normal subgroups are {e} and the group itself.

Theorem 6.5
As is a simple group.
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Proof. Suppose N < As. Then N is a union of conjugacy classes (Sheet 3, Q3(a)).
= |N| =1+ 15a + 20b + 12¢ + 12d where a,b,c,d € {0,1}. But by Lagrange’s

Theorem |N| | |A5] =60 = |N| =1 or 60. O

Comments
1. As is the smallest non-abelian simple group.
2. A, is simple V n > 5 (GRM), but A4 is not simple.
3. Classification of finite simple groups exists, includes oo families
e (), where p is prime (only abelian simple groups)
o A, forn>5
e groups of ‘Lie type’, matrix groups

e 26 sporadic groups, include Monster and Baby Monster
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§7 Matrix Groups

Let M,,(R) denote the set of all n x n matrices with entries in R.

Definition 7.1 (General Linear Group)
GL,(R) = {A € M,(R) : det A # 0}.

Proposition 7.1

GL,(R) is a group under matrix multiplication. It is called the general linear group.

Proof. closure: A, B € GL,,(R), clearly AB € M,,(R) and det(AB) = det Adet B # 0
so AB € GL,(R).
1
identity: I,, = € GLy(R)
1

inverse: det A # 0 = A~ ! exists, det A™1 = . #0.

matrix multiplication is associative:

(A(BC))ij = Air(BC)p;
= Ak BiiCij
((AB)C)ij = (AB)irCl;
= Ayt By Cp;j.

Example 7.1

GLy(R) = {(ccz Z) ca,b,c,d €R, ad—bc;éO}

a B\ 1 (d -b
c d ad—be\—c a ]’

Proposition 7.2
Det : GL,(R) — (R\ {0}, x)

78



A — det A.

is a surjective group homomorphism.

Proof. Note (R \ {0}, x) is a group. Det is clearly a map to (R \ {0}, %), we need to
check it’s a group homomorphism,

Det(AB) = det(AB) (AB is multiplication in GLy,)
=det A-det B (multiplication in (R \ {0}, x))
= Det ADet B

and that Det is surjective. Let r € (R \ {0}, %) then

r . O

A= L € GL,(R) — det(A) = r-

By 1st Isomorphism Theorem ker(Det) < GL,(R).

ker(Det) = {A € GL,(R) : det A =1}
= SL,(R) the special linear group.

Furthermore, by 1st Isomorphism Theorem

GLn(R)/SLn(R) = (R\ {0}, x).

Remark 24. More generally we can define the general linear group and special linear
group over any field.

Examples of fields:

R,C,Q,F, where F, = ({0,1,2,...,p — 1},+,, Xp) and p is prime. Note GL,(FF,) and
SL,(FF,,) are finite groups.

Whatis |GL3(F))|?

Non-zero determinant means we have linearly independent columns. The no. of choices
T

for the first column is p® — 1 (can’t be (0 0 0) ). The second column is not a multiple

of first so p> — p (there are p multiples of first column). Third column not in space
spanned by first two columns, this space has size p? (consider ac; + ey with o, 5 € Fp),
so p® — p°.

= |GL3(Fp)| = (0* = D(@* — )0 — p?).
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We can still consider
Det : GL3(F,) — (F, \ {0}, x)
A+ det(A).

Note (F, \ {0}, x) is a group: we have closure, identity = 1 and associativity. Let a €
[, \ {0}, by Bezout’s Thm 3 z, y s.t.
axr +py =1
saxr =1 (mod p)
Choose z =z (mod p),

1<z<p—-1, al=uzx

Det is a surjective homomorphism to (I, \ {0}, x) so by 1st Isomorphism Theorem
| GL3(Fp)|/[SLs(Fp)| =p — 1

— |SL3(F,)| = (p® — 1)(1);_1;)(193 7p2)'

§7.1 Actions of GL,(C)

1. Let C™ denote vectors of length n with entries in C:
GL,(C) xC" = C"
(A,v) — Av.
Note Iv = v, (AB)v = A(B(v)). This action is faithful: Av =v Vv e(C" =
A = I, (consider v = ¢;). The action has two orbits
Orbgr,, (c)(0) = {0}
Orbgr, (c)(v) = C"\ {0} for v # 0,
ie givenw # 03 A € GL,(C) s.t. Av=w.
2. Conjugation action of GL,,(C) on M,,(C) (set of all matrices)
GL,(C) x M,(C) — M,(C)
(P,A) — PAP .
Note: PQ(A) = PQA(PQ)™!
= PQAQ P!
= P(Q(A)).

Remark 25. Matrices A and B are conjugate if they represent the same linear map. If
PAP~! = B, then P represents a change of basis matrix. (See LA next year)

80



Example 7.2

A:el — 2e
62'—)362

-

LetP:ey— ey

ey — €1
01
=p!

P is a change of basis
—1_ (0 1) (2 0) (0 1
rar = 0) (6 5) (3 o)
(30
-~ \0 2
i.e. eg — 3eg

el — 2ej.

We will use the following result from V&M when investigating Mobius groups.

Result Let A € M5(C) and consider conjugation action of GL2(R) on M3(C). Then pre-
cisely one of the following occurs

1. The orbit of A contains a diagonal matrix (g\ 2) with A # pu.

2. The orbit of A is (A 0

0 >\> = M for some .

3. The orbit of A contains a matrix (3 i) for some \.

Proof. See V&M but essentially

1. In this case A has 2 distinct eigenvalues A # wu, take a basis consisting of an
eigenvector for A and an eigenvector for u. Distinct pairs given distinct orbits.

2. PAP7' =\ = A= PXP~! =\, eigenvalues ), ), 2 linearly independ-
ent eigenvectors.
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3. In this case A has a repeated eigenvalue, but just one linearly independent
eigenvector.

O]

§7.2 Orthogonal Group

Aside: Recalling transpose properties

Recall if A € M, (R), AT is defined by (AT);; = Aj;, i.e. the ij-th entry of AT is the ji-th

entry of A
2 4
r_ (2 3
Note
1. (AB)T = BT AT
[(AB)"];; = (AB)j;
= A, Bui
[BTAT); = BiT,CAfj
= Bridjiv
2. AAT =1
— 1 = det (ATA)
—det AT det A
= (det A)?
= detA#0
3. AAT =T = ATA=1.

— ATA=A"144T A
I
=A'A
=1.
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4. (AT =@ahHT
Since I, = (AA™HT
— (Afl)TAT

5. det AT = det A.

Definition 7.2 (Orthogonal group)
On(R)={A e M,(R): ATA=1}

(so columns of A form an orthonormal basis for R™).

Proposition 7.3
On(R) is a subgroup of GL,,(R) called the orthogonal group.

Proof.
e det A #0 = O,(R) C GL,(R).
e closure:
A, B € On(R)
(AB)T(AB) = BT AT AB
=B'B=1
= AB € O,(R)
e [, € Oy,(R)

Associativity is inherited.

inverse: ATA =1, = AT = A~'and A" € O,(R) since (AT)T = A and
AAT =1

O]

Note 1 = (det A)? = det A = +1if A € O,(R).
So,

Det : O,(R) — ({£1}, x)
A det A
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is a surjective homomorphism as, L € Op(R).

0

So ker(Det) = {4 € O,(R) : det A =1}
= SOn(R) < On(R)

..1

By 1st Isomorphism Theorem:

On(R)/SO(R) = Cs.

Lemma 7.1
Let A € O,(R) and z,y € R™. Then

1. Az - Ay =z -y
2. |Az| = |z|.

So A is an isometry (distance preserving map) of Euclidean space R".

Proof.

1. Az - Ay = (Az)" (Ay)
= QTATAQ
= gTy
=z-y.

2. |A§]2 = Ax - Az
—z-z
= |z

Note by Item 2 if ) is an eigenvalue of A, Az = Az = |\z| = [z|ie. [A\|=1.

§7.2.1 In 2 dimensions

a b

Let A= <c d> € GLy(R) and

I=AA"
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_fa b a c
“\e dJ\b d
= l=ad*+b = +d°

0 = ac + bd.
I=ATA

(o))

— 1=ad>+2 =0V +d

0=ab-+cd.
For0 <0 < 27 let
a)\ (cos®
c]  \siné
b\ (Fsinf
50 (d) o (:l: cos 9> '
cosf) —sind
A= (sin@ cos 6 )
det A = 1 so a rotation and all elements of SO2(R) are of this form.
cosfl sind
Or A= sin 6 —cosﬁ)
det A= -1

What are the fixed points?

0

2=z «— 72, =92z ¢7/2; = ¢i0/27 50 both are real.

e e W2 —tcR

e 7 =02,

—  a reflection in line ¢!?/2

All elmenents of O2(R) \ SO2(R) of this form.

S0, 0s(R) = SO»(R) U (1
——2"\o0
rotations

_01> SO5(R)

reflections
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Note any element of O2(R) is a product of at most two reflections. Since if A € SO2(R)

S

reflection reflection

§7.2.2 In 3 dimensions

Proposition 7.4
Let A € SO3(R). Then A has an eigenvector with eigenvalue 1.

Proof.

det(A — I) = det (A - AAT)
= det Adet (I — AT)
=1-det(I — A)T
=det(I — A)
= (=1)3det(A — 1)
= —det(A—1)
= det(A — I) = 0 and A has an eigenvalue = 1.

O]

Alternative Proof. Consider x 4(z) (characteristic poly of A), itis a cubic in R and its
roots multiply to 1 (det A = 1 =1II;\;). Thusithasarealroot,and [A\| =1 = A =
+1”. But the other eigenvalues are either a complex conjugate pair, then A = 1 as
product of eigenvalues give det A = 1, or all are real so either 1, -1, —1or 1,1,1. [

“|A\| =1 by Lemma 7.1

Theorem 7.1
Let A € SO3(R) then A is conjugate (i.e. there is a change of basis) to a matrix of the
cosf) —sinf 0
form | sinf cosf O | for some 6 € [0,27]. In particular, A is a rotation around
0 0 1
an axis through the origin.

Proof. By Proposition 7.4 3 v € R? with Av = v, we can assume |v| = 1. Let
{e1, 2, e3} be the standard orthonormal basis for R3. There exists P € SO3(R) s.t.
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Pv = e3. So PAP~!(e3) = e3 and for II plane perpendicular to ez then PAP~1(II)
is perpendicular to e3. So,

action| 0
PAP'=| onII|O0
0 01

0

| @ o

0 01

det(PAP™) =det A =1
= det@ =1
(PAP Y)Y PAP Y =T —= QQT =1
So, Q € SO, (R).

O
Suppose r is a reflection in a plane II through 0. Let n be a unit vector perpendicular to II.
-1 0 0
Thenr(z) = 2 —2(z-n)n, n — —n, Ilis fixed. So r is conjugateto | 0 1 0| € O3(R)
0 01

by taking basis n and two orthogonal unit vectors in II.

Os(R)= SOs3(R) U

rotations, det = 1

-1
SO3(R) includes

O~ O
= O O

0
0
e reflections

e inversion in origin, —I3

e combinations of rotations and reflections

Theorem 7.2

Any element of O3(R) is a product of at most 3 reflections.
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Proof. Let {e1, es, e3} be the standard orthonormal basis for R3. Let A € O3(R).
|Aes| = |es| = 1 since A is an isometry.

So 3 a reflection r1 s.t. 71 A(es) = es. LetII = (e1,es) L es. SoriA(Il) = 1I, as
angles are preserved.

J a reflection 79 s.t. ra(e3) = es, ra(r1A(e2)) = ea. So ror1 A fixes ey and es.

So ror1A(er) = +ey, if e; = e, set r3 = id. Else e; = —ey, let r3 be the reflection in
the plane L to e;.

So 73191 A fixes 1, eg, €3, 50 137971 A = id = A ="

r;lrgl = rirors. L]

Alternatively, any element in SO3(R) is a product of at most 2 reflections, via 2-

-1 00
dimensional case. Thus any elementof | 0 1 0| SO3(R) is a product of at most 3
0 01

reflections. Note we do need 3, e.g. —I3.
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§8 Mobius Groups

Definition 8.1 (Mébius transformation)
A Mobius transformation (or map) is a function of a complex variable z that can be
written in the form

az+b
cz+d

f(z) =
for some a, b, ¢, d € C with ad — bc # 0.
Why ad — bc # 0?
(ad — be)(z — w)

J(z) = J(w) = (cz+d)(cw+d)
So,ad —bc =0 = fis constant (not interesting). If, ad — bc # 0 = f is injective.

When does f(z) = g(2) (g(2) is f(z) with different a, b, ¢, d)? Suppose 3 at least 3 values
of zin Cs.t.

az+b  az+p
cz+d  yz+9
ad —bc # 0, ad — By # 0.

a B\ a b
Since, we have 3 distinct values of z for which

(az +b)(vz+ ) = (az+ B)(cz + d)

so these quadratics are identical

Then3 A #0,\ € Cs.t.

= avy=ac, bd = d
ad + 56 = ad + Be
Let p = ad — fc = ad — by
(so u? = (ad — be)(ad — Bv) # 0).

d —by[(a B (n O
me (455 ()
a B\ u a b
— (’y 5>_adbc<c d)'

Problem: f isnot defined at z = —%. We would like f (—%) = 00. We consider f defined
on CU {oo} = C the extended complex plane. So if f(z) = Zzzig,
If c #0; f(oo) =%, f(=%) = coelse c = 0; f(o0) = oo.

[

domain is now C..
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Figure 7: Stereographic projection of a complex number A onto a point « of the Riemann
sphere

Theorem 8.1

The set M of all Mobius maps on C is a group under composition. It is a subgroup
of Sym(Cy).

Proof. e Composition of maps is associative.
o [(z)=zeM(a=d=1,b=c=0)
e closure:

az+b (2) = i)

ca+d 9T ¥z +0
Suppose ¢ # 0, 6 # 0

First suppose z € C \ {—4/7}

a(az+6)+b

Then f(g(z)) = (W

+8
i;a) +d

_ (aac+by)z + (aff + bo)
~ (ca+dy)z+ (cB +dd)
eEM

Let f(z) =

since (aa + by)(cf + dd) — (af + bd)(ca + dvy) = (ad — be)(ad — By) # 0

(5 (-4) 10

(ac + by) (—%) + (af + b9) _aa (—%) +af

and (ca + d) (—%) + (cf + 0d) e (—%) +cB
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=%y
c
Need to check ¢ = 0

e Inverses:
az+b
= —-b
f(z) = 7=, ad —be # 0
dz—0b
Let £* =
et *(2) P

Then f(*(2)) = 2 = *(f() for 2 # ~ %, % o0

C

These cases are ok.

Theorem 8.2
GL2(C)/Z = M where Z = { (3 2\) :AeC\ {0}} (Z is the centre of GL2(C)).
Proof. We construct a surjective homomorphism from GL3(C) onto M with kernel
Z.
Let @ : GLy(C) — M
a b az+b
(c d,) = f2) = cz+d

Note ® is a homomorphism

az +b _ozz—i-ﬁ

fz) = cz+d’ 9(2) vz + 46

(¢ 9)=(( 5))o-

(acc+by)z + (af + bd)
(ca+dy)z + (cf + 0d)

(96 e

from proof of Theorem 8.1
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Clearly @ is surjective.

a b
(c d)ekerq)

az+b
cz+d
Letz=00 = ¢c=0

=z2VzeCyx

z2=0 = b=0
z=1 = a=d

— ker® =7
Finally apply 1st Isomorphism Theorem. O
Corollary 8.1
SLa(C) _
o M.

Proof. Restrict ¢ to SLa(C)
P . SL2 ((C) — M
a b 92 +b
c d cz+d
We require @ to be surjective:

az+b

fle)= =4

a b
. \/adfbcz + Vad—bc

c d
vad—be z+ Vad—be

And ker & = {£T1}. O

Proposition 8.1
Every Mobius map can be written as a composition of maps of the following forms:

1. z+— az, a # 0; represents a dilation or a rotation
2. z — z + b; a translation

3.z % ; inversion.
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Proof. Let f(z) = 28

cz+d*
Ife=0; z— (a>z H(G>Z+b
= (¢ . y -
——
f1, Item 1 f2, Item 2
f=/rfeofi
Ife#0
a b
az+b (Hz+ (e
R CLadO)

cz+d z—{—(%)

<a) fa(c:l;rbc
C Z+E
B
—A+—— B#0
z+ ¢ #

[

z — % =
f1, Item 2 C

1
o d
fa, Item 3 Z+E
B
e d
f3, Item 1 Z+E
B
= A+ 7
fa, Item 2 ZJFE

f=1faofsofa0fi

Definition 8.2 (Triply transitive action)

A group G acts triply transitively on a set X if given x1, 22,23 € X all distinct and
y1,Y2,ys € X all distinct there exists g € G such that g(x;) = y;, i = 1,2, 3.
A group G acts sharply triply transitively if such a g is unique.

Theorem 8.3
The action of M on C is sharply triply transitive.

Proof. Label first triple {2, 21, 200 } and second triple {wy, w1, w}. We construct
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g € Ms.t.

g:20—0
z1— 1

Zoo ¥ 00.
First suppose zp, 21, 200 7 00

_ (2= 20)(51 — 20)
= e em =)
Check: “ad — be” = (20 — 200) (21 — 200) (21 — 20) # 0.

If 200 = 0
(2= =)
99 = =)
If 21 =00
(z — 20)
If 2z = 0
(21 — 200)
9(2) (20
Similarly find h s.t.
g:wo—0
wy 1
Weo 3 0O.

Then f = h~ g : z — w;
Now to prove uniqueness.

Suppose [ : z; — w;

Then f~Lo f': z; — 2
Let g be as above

gf g0~ 0 = b=0
1l—=1 = a=d
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oo 00 — ¢=0
= gf 'flg' =id

= ff'=id
= f=f.
So, the image of just three points determines the map O

§8.1 Conjugacy classes in M

Recall @ : GL2(C) — M from proof of Theorem 8.2 (— means its a surjective homo-
morphism). Suppose A, B are conjugate in GL2(C), i.e. 3 P € GLy(C) s.t. PAP™' = B
then

O(P)D(A)®(P)~! = d(PAP™Y)
d(B)e M

i.e. ®(A) and ®(B) are conjugate in M.

Use knowledge of conjugacy classes in GL(C).

Theorem 8.4

Any non-identity Mobius map is conjugate to f(z) = vz for some v # 0,1 or to
f(z)=z+1.

Proof.
1.
(8 2) where A #£ u, A # 0 # pu.
) ((3 2)) = I f(z):zzzyz, v#0,1.
2.

A0
(0 A) where A # 0

(6 3))==
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3. Al
<O )\> where A # 0
Al Az +1 1
o 1 %
wr-o((3 ).
And (1 %) is coniueate to (L1
nd (, 9] isconjugateto (|
3 0y (11
0o 1) \o 1)°

Corollary 8.2
A non-identity Mobius map has either

1. 2 fixed points or

2. 1 fixed point.

Proof. Suppose gfg~! = h. Then « is a fixed point of f (i.e. f(a) = a) <= g(a)is

a fixed point of & (i.e. h(g(a)) = g(a)).”

So number of fixed points of f = number of fixed points of h as g is a bijection. By
Theorem 8.4 either, f conjugate to z — vz which has two fixed points: 0, oc; or f
conjugate to z — z + 1 which has one fixed point: co. O

) =9f9 '(9()) = g(a) or gf = hg = h(g(a)) =
h(g(a)) = g(f(@)) = g(a).

“fl@) = a < gf(e) = gla) < h(g(a)
g(a) if f(a) = a and conversely g(f(a)) =

§8.2 Circles in C_,

A Euclidean circle is the set of points in C given by some equation |z — 29| = r, r > 0. A
Euclidean line is the set of points in C given by some equation |z — a| = |z — b|, a # b.

Definition 8.3 (Circle in Cy)

A circle in Co, is either a Euclidean circle or a set L U {co} where L is a Euclidean
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line. Its general equation is of the form
AzZ+ Bz+ Bz +C =0, (4)
where A,C € Rand |BJ? > AC.
Where z = oo is a solution iff A = 0.

A = 0: line
C = 0: goes through the origin.

There is a unique circle passing through any 3 distinct points in C.

Theorem 8.5
Let f € M and C acircle in Co, then f(C) is a circle in Cw.

Proof. By Proposition 8.1, just need to consider f(z) = az, z+bor L. Let Sy p ¢ be
the circle defined by Equation (4).

f(2) = az:SaBc*— SajeaB/ac

f(z)=2+b:SaBc SaAB_Apcravh—Bo—Bb

1 _
f(z):;:w:SA,B,CHA+Bw+BfLD+Cwu_):0:SC7B7A.

Example 8.1

Consider the image of R U {oo} (a circle in C) under

zZ—1
2414

fz) =

It is thus a circle in C, containing f(0) = —1, f(oo) =1, f(1) = —iso f(RU{oo}) =
unit circle. Furthermore, complimentary components are mapped to compliment-
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N

ary components.

§8.3 Cross-Ratios

Definition 8.4

The cross-ratio of distinct points z1, 22, 23, 24 € C.

[21, 29, 23, 24] = (21— 25)(22 — 24)
T (21 — 22)(23 — 24)
[00, 22, 23, 24] = G2=z)
) 225 23, 24 (23 )
[21,00, 23, 24] = —(Zl )
Y (23 — 24)
(21,2 ooz]—f(z2_z4)
1, 22,00, 24] = (1 — )
[21, 22, 23, 00] = (21— 25)
U (21 — 22)

Note [0,1,w,00] = ={ = w

Warning: different authors use different permutations of 1, 2, 3, 4 in the definition.

Theorem 8.6

Given z1, 29, 23,24 € Cq distinct wy, wo, w3, wy € Co distinct then 3 f € M s.t.
f(z) = wi < [z1,22,23,24] = [w1, w2, w3, wy]. In particular, MObius maps pre-
serve cross-ratios [21, 22, 23, z4] = [f(21), f(22), f(23), f(24)]

Proof. ( = ): Suppose f(zj;) = w; and z;,w; # oo V iand f(z) = “Z:[Z, then

98



cz;j+d#0 Vj.

So, wj — wx = f(25) — f(2k)
_ (ad —bc)(zj — zx)
(czj + d)(czp + d)
= [21, 29, 23, 24] = [w1, wa, w3, Wy

= [f(21), f(22), f(23), f(24)]

Need to check other cases; 21 = 0o, w; = f(o0) = 2 etc.

(<=): Suppose [z1, 22, 23, 24] = [w1, w2, w3, wy]. Let g € M s.t. g(z1) = 0,9(22) =
1,9(z4) = o0 as triple transitive. Let h € M s.t. h(w;) = 0, h(wz) = 1, h(wy) = oo.

9(z3) = 0,1, g(23), o]

= [9(21), 9(22), 9(23), 9(24)]
= [21, 22, 23, 24] by above
= [w1, wa, w3, Wy
= [h(w1), h(w2), h(ws), h(wa)]

= 10,1, h(ws), 0]

= h(ws).

So h™1g is required map. O

So (21, 22, 23, 24] = f(23) where f is the unique Mdbius map that sends z; — 0, 2o —
1, z4 — oo.

Corollary 8.3

21, 22, 23, 24 lie in some circle in Co, <= |21, 22, 23, 24] € R.

Proof. Let C be a circle through z1, 29, 24.
Letg:C — RU{oo} s.t. g(z1) =0, g(z2) =1, g(z4) = 0.

9(z3) = (0,1, g(23), o]
= [9(#1), 9(22), 9(23), 9(24)]
= [21, 22, 23, 24] by Theorem 8.6
SO, [Zl,ZQ,Zg,Z4] eER «— g(Z3> eR
<— z3€C.

99



	Introduction
	Groups and homomorphisms
	Motivation
	Basic Definitions and Examples

	The Dihedral and Symmetric Groups
	Dihedral Groups
	Symmetric Groups
	Small n


	Cosets and Lagrange
	Normal Subgroups, Quotient groups and Homomorphisms
	Examples

	Direct Products and Small Groups
	Direct Products
	Small Groups
	Classifying groups of small order
	Groups of order 8
	Realisations of Q₈


	Group Actions
	Application to Symmetry Groups of Regular Solids
	Tetrahedron (self-dual)
	Cube (dual to octahedron)
	Dodecahedron (dual to Icosahedron) - Non examinable

	Another Application of Orbit-Stabiliser Theorem
	Conjugacy Action
	Conjugation in Sₙ


	Matrix Groups
	Actions of GLₙ(ℂ)
	Orthogonal Group
	In 2 dimensions
	In 3 dimensions


	Möbius Groups
	Conjugacy classes in ℳ
	Circles in C
	Cross-Ratios


