
Part IA — Differential Equations
Based on lectures by Prof. A. Challinor

Michaelmas 2021

Syllabus

Basic calculus
Informal treatment of differentiation as a limit, the chain rule, Leibnitz’s rule, Taylor series,
informal treatment of O and o notation and l’Hôpital’s rule; integration as an area, fundamental
theorem of calculus, integration by substitution and parts. [3]

Informal treatment of partial derivatives, geometrical interpretation, statement (only) of symme-
try of mixed partial derivatives, chain rule, implicit differentiation. Informal treatment of differen-
tials, including exact differentials. Differentiation of an integral with respect to a parameter.[2]

First-order linear differential equations
Equations with constant coefficients: exponential growth, comparison with discrete equations,
series solution; modelling examples including radioactive decay.

Equations with non-constant coefficients: solution by integrating factor. [2]

Nonlinear first-order equations
Separable equations. Exact equations. Sketching solution trajectories. Equilibrium solutions,
stability by perturbation; examples, including logistic equation and chemical kinetics. Discrete
equations: equilibrium solutions, stability; examples including the logistic map. [4]

Higher-order linear differential equations
Complementary function and particular integral, linear independence, Wronskian (for second-
order equations), Abel’s theorem. Equations with constant coefficients and examples including
radioactive sequences, comparison in simple cases with difference equations, reduction of order,
resonance, transients, damping. Homogeneous equations. Response to step and impulse function
inputs; introduction to the notions of the Heaviside step-function and the Dirac delta-function.
Series solutions including statement only of the need for the logarithmic solution. [8]

Multivariate functions: applications
Directional derivatives and the gradient vector. Statement of Taylor series for functions on
Rn. Local extrema of real functions, classification using the Hessian matrix. Coupled first
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order systems: equivalence to single higher order equations; solution by matrix methods. Non-
degenerate phase portraits local to equilibrium points; stability.

Simple examples of first- and second-order partial differential equations, solution of the wave
equation in the form f(x + ct) + g(x − ct). [5]
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§0 Introduction Video

24 lecture course. Full notes will be provided on moodle, small typefont indicates an
aside, either because the material is non examinable or will be covered in greater detail
in a later course.

Four example sheets.

§0.1 Schedule

1. Basic Calculus (5 lectures)
2. First-order linear differential equations (2)
3. Nonlinear first-order differential equations (4)
4. Higher-order linear differential equations (8)
5. Multivariate functions: applications (5)

§0.2 Introduction

They describe the rate of change of the dependent variable wrt the independent vari-
able.

Example 0.1 (Newton’s 2nd law)

m
d2x

dt2 = F

If F depends only on t, then we can simply integrate twice. However, if F is a
function of x (such as a charged particle in a electric field which varied over space).

Applied course - emphasises methods and results rather than proof or existence.

§0.3 Limits

• Informally, if limx→x0 f(x) = A, then f(x) can be made arbitrarily close to A by
making x sufficiently close to x0

– Note, does not require f(x0) to equal A (or even to exist) – a limit is a
statement about the behaviour of a function in the vicinity of x0, but not at
that point.

• More formally, for a function f(x) defined on some open interval containing x0
(but not necessarily at x0), limx→x0 f(x) = A means that

– for any ϵ > 0, there exists δ > 0 such that |f(x)−A| < ϵ for all 0 < |x−x0| < δ.
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– Right hand limit, for example, defined similarly but with 0 < |x − x0| < δ
replaced with 0 < x − x0 < δ. A similar procedure can be done for left hand
limits

Figure 1: Right hand limit

• We can also define limits at infinity, e.g. limx→x0 f(x) = A means that

– for any ϵ > 0, there exists X > 0 such that |f(x) − A| < ϵ for all x > X.

§0.3.1 Properties

• If f(x) has a limit at a point, it is unique
• If limx→x0 f(x) = A and limx→x0 g(x) = B, then:

– limx→x0 [f(x) + g(x)] = A + B

– limx→x0 [f(x)g(x)] = AB

– limx→x0 [f(x)/g(x)] = A/B. If B = 0, the limit of the quotient does not exist
if A ̸= 0, but may exist in the indeterminate case A = B = 0

These properties will be proved carefully in the Analysis 1 course next term, but will be
used as without proof in this course.
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§0.3.2 Proof of uniqueness of limits

Suppose that limx→x0 f(x) = A and limx→x0 f(x) = B. In terms of our epsilon-delta
definition, this means that for any ϵ > 0 there exists δA > 0 and δB > 0 such that

for 0 < |x − x0| < δA, |f(x) − A| < ϵ/2, where ϵ/2 is an arbitrary positive quantity.
and for 0 < |x − x0| < δA, |f(x) − B| < ϵ/2

Now let δ = min(δA, δB) and consider 0 < |x − x0| < δ - follows that

|A − B| = |[A − f(x)] − [B − f(x)]|
≤ |A − f(x)| + |B − f(x)|
≤ ϵ

Since this holds for all ϵ > 0, we must have A = B.
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Pt-IA Mathematics 2021/22: Differential equations 1

I. BASIC CALCULUS

1 Differentiation

We begin with a recap of the main ideas of differenti-
ation. Much of the material in this section will likely
already be familiar to you.

Definition (Derivative of a function). We define the
derivative of a function f(x) with respect to its argu-
ment x as the function given by the limit

df

dx
= lim

h→0

f(x+ h)− f(x)

h
. (1)

As shown in the figure to the right, the value of df/dx
at argument x = x0 is the slope of the graph of f(x)
at the point x0, and so determines the rate of change of
f(x) with respect to x there.

For the function f(x) to be differentiable at the point x0,
and so for the function df/dx to be well-defined there,
the left-hand limit (i.e., h is negative and approaches
zero from below) and the right-hand limit (h is positive
and approaches zero from above) must be defined and
equal:

lim
h→0−

f(x0 + h)− f(x0)

h
= lim

h→0+

f(x0 + h)− f(x0)

h
.

This is actually quite a strong restriction on the “smooth-
ness” of the function f(x). As an example, f(x) = |x|
is not differentiable at x = 0 since

lim
h→0−

|h|
h

= −1 but lim
h→0+

|h|
h

= +1 .
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Aside: limits

You will see much more about limits next term in Analysis I.

Informally, if limx→x0 f(x) = A, then f(x) can be made arbitrarily close
to A by making x sufficiently close to x0. Note that we do not require
f(x0) to equal A (or even to exist) – the limit is a statement about the
behaviour of the function in the vicinity of x0, but not actually at x0.

A little more formally, for a function f(x) defined on some open interval
containing x0 (but not necessarily at x0), limx→x0 f(x) = A means that

for any ε > 0, there exists δ > 0 such that
|f(x)−A| < ε for all 0 < |x− x0| < δ.

The right-hand limit, for example, is defined similarly but with 0 <
|x− x0| < δ replaced by 0 < x− x0 < δ.

We can also define limits at infinity. For example, limx→∞ f(x) = A
means that

for any ε > 0, there exists X > 0 such that
|f(x)−A| < ε for all x > X.

Various properties of limits will be proven in Analysis I. Here, we simply
state some of the most important properties.

• If f(x) has a limit at a point, it is unique.

• If limx→x0 f(x) = A and limx→x0 g(x) = B, then:

– limx→x0 [f(x) + g(x)] = A+B;

– limx→x0 [f(x)g(x)] = AB;

– limx→x0 [f(x)/g(x)] = A/B for B 6= 0.

If B = 0, the limit of the quotient does not exist if A 6= 0, but may exist
in the indeterminate case A = B = 0.

The notation df/dx for the derivative of a function is due
to Leibniz. Notice how the denominator shows what the
argument of the function is. Other widely used notations
for the derivative include f ′(x), due to Lagrange, and ḟ ,
due to Newton and usually reserved for differentiation
with respect to time.
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For sufficiently smooth functions, we can define higher
derivatives recursively. For example, for the second deriva-
tive

d

dt

(
df

dt

)
=
d2f

dt2
= f ′′(t) = f̈(t) .

For the nth derivative, the notation

dnf

dxn
= f (n)(x)

is sometimes used.

1.1 Big-O and little-o notation

Two very useful concepts in applied mathematics are big
O (pronounced “Oh”) and little o, which is sometimes
written o to distinguish clearly between the two symbols.

These two concepts, sometimes called order parameters,
are used to give comparative scalings between functions
sufficiently close to some limiting point x0 (which may
be ∞).

Definition (O and o notations).

1. f(x) is o[g(x)] as x→ x0 if

lim
x→x0

f(x)

g(x)
= 0 ,

commonly written as f(x) = o[g(x)]. Informally,
this means that “f(x) is much smaller than g(x) as
x→ x0”.

2. f(x) is O[g(x)] as x → x0 if f(x)/g(x) is bounded
as x → x0, i.e., there exists δ > 0 and M > 0 such
that for all x with 0 < |x− x0| < δ,

|f(x)| ≤M |g(x)| .

This is commonly written as f(x) = O[g(x)].
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These ideas can be extended to the behaviour at infinity.
For example, f(x) is O[g(x)] as x → ∞ if there exists
M > 0 and X > 0 such that for all x > X we have
|f(x)| ≤M |g(x)|.

Note that there is an abuse of notation here when writ-
ing, for example, f(x) = O[g(x)], since O[g(x)] is not
a function. Rather, we mean that f(x) and g(x) are in
a class of functions with the required property of vary-
ing in a particular way as x0 is approached. Writing
f(x) ∈ O[g(x)] is more appropriate, but f(x) = O[g(x)]
is commonplace.

Note from the definitions, f = o(g) ⇒ f = O(g) but
not vice versa. For example, if f(x) = 2x, we have
f(x) = O(x) since f(x)/x = 2, but then f(x) 6= o(x).

Example. The function x2 is o(x) as x→ 0 since

lim
x→0

x2

x
= lim

x→0
x = 0 .

Example. The function x2 + x is O(x2) as x → ∞.
This follows since for x > 1 we have x2 > x, so that

|x2 + x| < 2|x2| for x > 1 .

Generally, a polynomial with largest power xn will be
O(xn) (or any larger power of x) as x→∞.

Some further examples:

• x = o(
√
x) as x→ 0 ;

• sin 2x = O(x) as x→ 0 as sin 2x ≈ 2x for small x ;

•
√
x = o(x) as x→∞ ; and

• cos(x) = O(1) for all x as | cosx| ≤ 1 .

Order parameters are frequently used in calculus to clas-
sify remainder terms before taking a limit. For example,
we can write Eq. (1) as

df

dx

∣∣∣∣
x0

=
f(x0 + h)− f(x0)

h
+
o(h)

h
as h→ 0 . (2)
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We can establish the truth of this by taking the limit
h→ 0 of both sides. The left-hand side does not depend
on h, while the limit of the first term on the right is,
by definition, df/dx at x0. It follows that the limit of
the (final) remainder term, limh→0 o(h)/h = 0, which is
consistent with the little-o notation.

Multiplying Eq. (2) across by h, we obtain

f(x0 + h) = f(x0) + h
df

dx

∣∣∣∣
x0

+ o(h) as h→ 0 . (3)

This identifies f(x0 + h) with the value given by the
tangent line at the point x0 plus a remainder that is
o(h).

1.2 Rules of differentiation

Let us remind ourselves of the several useful rules of
differentiation, and how they arise from the fundamental
definitions presented above.

1.2.1 Chain rule

Consider the case where we want to differentiate a “func-
tion of a function” of the independent variable, i.e.,
f(x) = F (g(x)). For example, we might have f(x) =
sin(x2 − x + 2), where F (X) = sin(X) and g(x) =
x2 − x+ 2.

Theorem (Chain rule). Given f(x) = F (g(x)), then

df

dx
= F ′ (g(x))

dg

dx
=
dF

dg

dg

dx
. (4)

The first term on the right is the derivatve of the func-
tion F with respect to its argument, evaluated at g(x).

For our specific example,

d

dx
sin(x2 − x+ 2) =

[
cos(x2 − x+ 2)

]
(2x− 1).
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Proof (Chain rule). We have

df

dx
= lim

h→0

F (g(x+ h))− F (g(x))

h

= lim
h→0

F (g(x) + hg′(x) + o(h))− F (g(x))

h
,

where we assume that g is differentiable. Now, if we write

X = g(x) and H = hg′(x) + o(h) ,

then

F
(
g(x) + hg′(x) + o(h)

)
= F (X +H)

= F (X) +HF ′(X) + o(H) ,

so that

df

dx
= lim

h→0

[hg′(x) + o(h)]F ′(X) + o(H)

h

= g′(x)F ′(X) + lim
h→0

o(H)

h
.

The final term on the right is zero. To see this, consider the following
two cases separately.

• g′(x) = 0. In this case, H = o(h) as h → 0 and so goes to zero
“faster” than h as h→ 0. It follows that a term of o(H) as H → 0
goes to zero “faster still” as h→ 0 and so is certainly o(h).

• g′(x) 6= 0. In this case, H = O(h) but is certainly not o(h) as
h→ 0. This means that for small enough h, H is proportional to
h and so a term of o(H) goes to zero faster than linearly in h and
so is o(h) as h→ 0.

Finally, we recover the chain rule:

df

dx
= g′(x)F ′(g(x)) .

1.2.2 Product rule

Consider the situation where f(x) = u(x)v(x), i.e., f
can be written as the product of two other functions u
and v.
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Theorem (Product rule). Given f(x) = u(x)v(x),

df

dx
= v

du

dx
+ u

dv

dx
. (5)

The proof of this is an exercise on Examples Sheet 1.

The quotient rule is a special case of the product rule,
replacing v → 1/v:

f =
u

v
→ f ′ =

u′v − v′u
v2

. (6)

1.2.3 Leibniz’s rule

The product rule can be generalized to higher-order deriva-
tives very straightforwardly by recursive application. Con-
sidering f(x) = u(x)v(x), we have

f ′ = u′v + uv′ ,

f ′′ = u′′v + u′v′ + u′v′ + uv′′

= u′′v + 2u′v′ + uv′′ ,

f ′′′ = u′′′v + u′′v′ + 2u′′v′ + 2u′v′′ + u′v′′ + uv′′′

= u′′′v + 3u′′v′ + 3u′v′′ + uv′′′ .

This should be reminscent to you of Pascal’s triangle
and the binomial theorem.

Theorem (Leibniz’s rule). Given f(x) = u(x)v(x),

f (n)(x) =
n∑
r=0

(
n

r

)
u(n−r)v(r) (7)

= u(n)v + nu(n−1)v′ +
n(n− 1)

2!
u(n−2)v′′

+ · · ·+ n!

m!(n−m)!
u(n−m)v(m) + · · ·+ uv(n) .

Here, recall, a superscript (n) denotes the nth derivative
(with, for example, u(0) = u), and the binomial coeffi-
cient, (

n

r

)
≡ n!

r!(n− r)!
, (8)



Pt-IA Mathematics 2021/22: Differential equations 8

denotes the number of combinations of r elements that
can be taken from n elements without replacement.

Of course, the Leibniz rule relies on the functions u and
v being n-times differentiable.

Proof (Leibniz’s rule). We prove this by induction. Equation (7) reduces
to the product rule when n = 1, and so is true in this case. We now
show that it is true for n+ 1 if true for n ≥ 1.

Differentiating the Leibniz rule for n with the product rule, we have

f (n+1) =
d

dx

n∑
r=0

(
n

r

)
u(n−r)v(r)

=

n∑
r=0

(
n

r

)[
u(n+1−r)v(r) + u(n−r)v(r+1)

]
. (9)

The last term on the right is

n∑
r=0

(
n

r

)
u(n−r)v(r+1) =

n−1∑
r=0

(
n

r

)
u(n−r)v(r+1) + uv(n+1)

=
n∑

r=1

(
n

r − 1

)
u(n+1−r)v(r) + uv(n+1) ,

where we have relabelled r → r − 1 in passing to the second line. Com-
bining with the first term on the right of Eq. (9), we have

f (n+1) = u(n+1)v +
n∑

r=1

[(
n

r

)
+

(
n

r − 1

)]
u(n+1−r)v(r) + uv(n+1)

= u(n+1)v +

n∑
r=1

(
n+ 1

r

)
u(n+1−r)v(r) + uv(n+1)

=

n+1∑
r=0

(
n+ 1

r

)
u(n+1−r)v(r) . (10)

Here, we have used Pascal’s rule,(
n

r

)
+

(
n

r + 1

)
=

(
n+ 1

r + 1

)
,

which follows from Pascal’s triangle (or directly from the expression for
the binomial coefficients, Eq. 8).

Equation (10) is Leibniz’s rule for n+ 1, proving that if true for n, it is
also true for n+ 1.
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1.3 Taylor series

1.3.1 Taylor’s theorem

Recall Eq. (3), which can be rewritten as

f(x0 + h) = f(x0) + h
df

dx

∣∣∣∣
x=x0

+ o(h) as h→ 0 .

Provided the first n derivatives of f exist, this can be
generalised to Taylor’s theorem.

Theorem (Taylor’s theorem). For n-times differentiable
f(x), we have

f(x0 + h) = f(x0) + h
df

dx

∣∣∣∣
x=x0

+
h2

2!

d2f

dx2

∣∣∣∣
x=x0

+ · · ·+ hn

n!

dnf

dxn

∣∣∣∣
x=x0

+ En , (11)

where En = o(hn) as h→ 0.

In fact, if f (n+1) exists ∀x ∈ (x0, x0 + h) and f (n) is
continuous in this range, it can be shown (see Analysis
I ) that En = O(hn+1) as h→ 0. In particular,

En =
f (n+1)(xn)

(n+ 1)!
hn+1 , (12)

for some xn with x0 ≤ xn ≤ x0 + h.

Note that En = O(hn+1) is a stronger statement than
En = o(hn). For example, for 0 < a < 1,

hn+a = o(hn) as h→ 0 ,

but
hn+a 6= O(hn+1) as h→ 0 .

Taylor’s theorem is an exact statement that expresses
the value of a function f at a point x0 + h in terms of
the value of the function at x0, its derivatives at x0, and
an error term En whose behaviour we know as h gets
smaller.
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1.3.2 Taylor Polynomials

If we write x = x0 + h, then Eq. (11) can be rewritten
as

f(x) = f(x0) + (x− x0)f
′(x0)

+ · · ·+ (x− x0)
n

n!
f (n)(x0) + En . (13)

The first n+1 terms on the right-hand side form the nth-
order Taylor polynomial of f(x) about the point x = x0.
Note that the coefficients of this polynomial are such
that its first n derivatives match those of f(x) at x0.

The Taylor polynomial can be used to approximate func-
tions in the vicinity of a point, with an error controlled
by En. Note that this is a local approximation and does
not necessarily tell us anything about the function far
from the point (although it sometimes does).

Regarding the nth Taylor polynomial as a series, if the
limit n→∞ exists (i.e., the series converges) we obtain
the Taylor series of f(x) about the point x0.

1.4 L’Hôpital’s rule

Taylor series representations are very useful to under-
stand L’Hôpital’s rule, which can be used to determine
the value of limits of indeterminate forms.

Theorem (L’Hôpital’s rule). Let f(x) and g(x) be dif-
ferentiable at x = x0, with continuous first derivatives
there, and

lim
x→x0

f(x) = f(x0) = 0 and lim
x→x0

g(x) = g(x0) = 0 .

Then if g′(x0) 6= 0,

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
, (14)

provided the limit on the right exists.
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Proof. For this special case (the rule actually applies in
much more general circumstances), we have

f(x) = f(x0) + (x− x0)f
′(x0) + o(x− x0)

= 0 + (x− x0)f
′(x0) + o(x− x0) ,

g(x) = g(x0) + (x− x0)g
′(x0) + o(x− x0)

= 0 + (x− x0)g
′(x0) + o(x− x0) .

It follows that

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′ + o(x− x0)/(x− x0)

g′ + o(x− x0)/(x− x0)
=
f ′(x0)

g′(x0)
,

where in the last step we have used g′(x0) 6= 0. Finally,
since the first derivatives were assumed continuous at
x = x0, we have

f ′(x0)

g′(x0)
= lim

x→x0

f ′(x)

g′(x)
.

The rule can be generalised to higher orders. For ex-
ample, if f(x0) = f ′(x0) = 0 and if g(x0) = g′(x0) = 0,
then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′′(x)

g′′(x)
,

provided that the limit exists.

As a concrete example, consider

f(x) = 3 sinx− sin 3x and g(x) = 2x− sin 2x .

For these functions, f(0) = g(0) = f ′(0) = g′(0) =
f ′′(0) = g′′(0) = 0. As an exercise, show that

lim
x→0

f(x)

g(x)
= 3 = lim

x→0

f ′′′(x)

g′′′(x)
.

2 Integration

You will be familiar with integration as the “area under a
curve” and also as the inverse of differentiation. We shall
review both concepts in this section, as well as recapping
some useful methods for integrating functions.
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2.1 Integrals as Riemann sums

The “area under the curve” concept of an integral can
be formalised as a Riemann sum. This is another topic
that will be dealt with in detail in Analysis I, but let us
briefly explore the idea here.

Definition (Integral). The integral of a (suitably well-
defined) function f(x) is the limit of a sum, e.g.,∫ b

a

f(x) dx ≡ lim
∆x→0

N−1∑
n=0

f(xn)∆x = lim
N→∞

N−1∑
n=0

f(xn)∆x ,

(15)
where ∆x = (b− a)/N and xn = a + n∆x, as shown in
the figure to the right.

The essence of the Riemann sum definition of the inte-
gral is that the limit should not depend exactly on how
the rectangles are chosen (e.g., their widths do not have
to be uniform, provided they all go to zero as N → 0).

We now demonstrate that for sufficiently well-behaved
functions, Eq. (15) coincides with the familar “area un-
der the curve”. We do this by first considering each
rectangle in turn for finite N . Provided that f(x) is
continuous, the area under the curve between xn and
xn+1 is

An = (xn+1 − xn)f(cn) ,

where xn ≤ cn ≤ xn+1. This is an example of the mean-
value theorem. We will not prove this here, but see the
figure to the right for why this is plausible.

If f(x) is differentiable, we have

f(cn) = f(xn) +O(cn − xn) as cn − xn → 0

= f(xn) +O(∆x) (since cn ≤ xn + ∆x) ,

from which it follows that

An = f(xn)∆x+O(∆x2) as ∆x→ 0 .



Pt-IA Mathematics 2021/22: Differential equations 13

Finally, the total area under the curve between x = a
and x = b is

A = lim
N→∞

N−1∑
n=0

An

= lim
N→∞

N−1∑
n=0

[
f(xn)∆x+O(∆x2)

]
= lim

N→∞

N−1∑
n=0

f(xn)∆x+ lim
N→∞

NO

(
(b− a)2

N 2

)

= lim
N→∞

N−1∑
n=0

f(xn)∆x+ lim
N→∞

O

(
(b− a)2

N

)

= lim
N→∞

N−1∑
n=0

f(xn)∆x =

∫ b

a

f(x) dx .

2.2 Fundamental theorem of calculus

The concept of integration as the inverse of differenta-
tion is formulated in the fundamental theorem of calcu-
lus.

Theorem (Fundamental theorem of calculus). Let F (x)
be defined as

F (x) =

∫ x

a

f(t) dt .

Then
dF

dx
= f(x) . (16)

Proof. From the definition of the derivative, we have

dF

dx
= lim

h→0

1

h

[∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

]
.
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The two overlapping parts cancel, and so

dF

dx
= lim

h→0

1

h

∫ x+h

x

f(t) dt

= lim
h→0

1

h

[
f(x)h+O(h2)

]
= lim

h→0
[f(x) +O(h)]

= f(x) ,

where we used the mean-value theorem in passing to the
second line.

Note that another way to interpret the Fundamental
theorem of calculus is that the integral F (x) is the so-
lution of the differential equation

dF

dx
= f(x) with F (a) = 0 . (17)

As corollaries to the Fundamental theorem of calculus,
we have

d

dx

∫ b

x

f(t) dt = −f(x) ,

and, using the chain rule,

d

dx

∫ g(x)

a

f(t) dt = f(g(x))g′(x) .

Notation. We write indefinite integrals either as
∫
f(x) dx

or
∫ x
f(t) dt, where the unspecified lower limit gives rise

to an integration constant.

2.3 Methods of integration

Integration is more difficult than differentiation. We
cannot always evaluate integrals analytically in terms
of simple (or not so simple!) functions. However, for
those cases where we can, tricks such as integration by
substitution or by parts are often helpful.
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Identity Term in integrand Substitution

cos2 θ + sin2 θ = 1
√

1− x2 x = sin θ
1 + tan2 θ = sec2 θ 1 + x2 x = tan θ

cosh2 u− sinh2 u = 1
√
x2 − 1 x = coshu

cosh2 u− sinh2 u = 1
√

1 + x2 x = sinhu
1− tanh2 u = sech2u 1− x2 x = tanhu

Table 1: Useful trigonometric or hyperblic substitutions.

2.3.1 Integration by substitution

If the integrand contains a function of a function, inte-
gration by substitution is often useful.

Example. Consider

I =

∫
1− 2x√
x− x2

dx .

Let u = x− x2 so that du = (1− 2x)dx; then

I =

∫
du√
u

= 2
√
u+ c = 2

√
x− x2 + c ,

where c is a constant of integration.

Trigonometric (or hyperbolic) substitutions are often
useful. If the function in the second column of Table 1
appears in the integrand, try proceeding by making the
substitution in the third column and simplify using the
idenity in the first column.

Example. Consider

I =

∫ √
2x− x2 dx .

Since 2x− x2 = 1− (x− 1)2, let us try x− 1 = sin θ so



Pt-IA Mathematics 2021/22: Differential equations 16

that dx = cos θdθ. It follows that

I =

∫
cos2 θ dθ

=
1

2

∫
(1 + cos 2θ) dθ

=
1

2
θ +

1

4
sin 2θ + c

=
1

2
θ +

1

2
sin θ cos θ + c

=
1

2
arcsin(x− 1) +

1

2
(x− 1)

√
1− (x− 1)2 + c ,

where c is an integration constant and arcsin is the in-
verse sine function.

2.4 Integration by parts

“Integration by parts” exploits the product rule, which
we write here in the form

uv′ = (uv)′ − u′v .

Integrating both sides gives rise to the following.

Theorem (Integration by parts). For functions u and
v, ∫

uv′ dx = uv −
∫
u′v dx. (18)

Example. Consider

I =

∫ ∞
0

xe−x dx .

Let u = x and v′ = e−x, so that v = −e−x. We then
have

I =
[
−xe−x

]∞
0

+

∫ ∞
0

e−x dx

= 0 +
[
−e−x

]∞
0

= 1 .

Example. Consider

I =

∫
lnx dx .
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Let u = lnx and v′ = 1, so that v = x. Integrating by
parts gives

I = x lnx−
∫
x

(
1

x

)
dx

= x lnx− x+ c ,

where c is an integration constant.

3 Partial differentiation

Here we generalize differentiation to functions of more
than one variable.

3.1 Functions of several variables

Multivariate functions depend on more than one inde-
pendent variable. Some physical examples include:

• the height of some terrain, which depends on both
latitude and longitude;

• the density of air in this room, which depends on
both position and time; and

• the energy of a thermodynamic system, which de-
pends on its volume and temperature.

Considering a function of two variables, f(x, y), we can
represent it as a contour plot (see figure to the right)
where f is constant on each contour line.

What is the slope of the function f at the point
A? The answer obviously depends on the direction.
The first thing to do is to figure out the slope along
directions parallel to the coordinate axes, which leads
us to the concept of partial differentiation.
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3.2 Partial derivatives

Definition (Partial derivative). Given a function of sev-
eral variables, for example, f(x, y), the partial derivative
of f with respect to x is the rate of change of f as x varies
at fixed y. It is given by

∂f

∂x

∣∣∣∣
y

= lim
δx→0

f(x+ δx, y)− f(x, y)

δx
. (19)

Note that the partial derivative of f with respect to x es-
sentially corresponds to the slope of f experienced when
moving purely left to right (in the positive x-direction).

Similarly, the partial derivative of f(x, y) with respect
to y is defined as the function

∂f

∂y

∣∣∣∣
x

= lim
δy→0

f(x, y + δy)− f(x, y)

δy
, (20)

i.e., the slope of f experienced when moving in the pos-
itive y-direction.

Note the “curly” partial derivative symbol, ∂, to distin-
guish from the ordinary derivative.

Example. Consider f(x, y) = x2+y3+exy
2

. To compute
the partial derivatives with respect to x, we simply hold
y constant and differentiate regularly as if x were the
only variable:

∂f

∂x

∣∣∣∣
y

= 2x+ y2exy
2

.

Similarly, for the partial derivative with respect to y,

∂f

∂y

∣∣∣∣
x

= 3y2 + 2xyexy
2

.

We can also compute second derivatives

∂2f

∂x2

∣∣∣∣
y

= 2 + y4exy
2

,

∂2f

∂y2

∣∣∣∣
x

= 6y + 2xexy
2

+ 4x2y2exy
2

,
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as well as mixed partial derivatives

∂

∂x

(
∂f

∂y

∣∣∣∣
x

)∣∣∣∣
y

= 2yexy
2

+ 2xy3exy
2

,

∂

∂y

(
∂f

∂x

∣∣∣∣
y

)∣∣∣∣∣
x

= 2yexy
2

+ 2xy3exy
2

.

It is necessary to be careful to avoid ambiguity in which
arguments specifically are being held fixed when the par-
tial derivatives are being taken. However, it is often
cumbersome to indicate this explicitly. In cases where
all other variables are being held fixed, we shall omit
the |y, for example, and simply write ∂f/∂x.

With this convention, for example,

∂

∂x

(
∂f

∂y

∣∣∣∣
x

)∣∣∣∣
y

=
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
.

Notice that for the function in the example above,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
, (21)

and so it does not matter in which order the partial
derivatives are taken. This can be shown to hold true
generally (Schwarz’s theorem or Clairaut’s theorem), pro-
vided that the function has continuous (mixed) second
derivatives at the point of interest.

Finally, we note that an alternative subscript notation
is sometimes used for partial derivatives. For example,

fx ≡
∂f

∂x
; fxy ≡

∂2f

∂y∂x
.

Note the ordering in the second case. The left-hand side
should be interpreted as (fx)y, so that the partial deriva-
tive is first taken with respect to x before the resulting
function is differentiated with respect to y. Of course,
in most cases this is not important since fxy = fyx.
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3.3 Multivariate chain rule

The chain rule (Eq. 4) tells us how to differentiate a
“function of a function”. How does this extend to mul-
tivariate functions? For example, for a given path x(t)
and y(t), where t is a parameter along the path, the
function f(x, y) can be considered a function of t, i.e.,
f((x(t), y(t)). How do we calculate df/dt?

Consider the change in f(x, y) under an arbitrary small
displacement in any direction,

(x, y)→ (x+ δx, y + δy) .

We have

δf = f(x+ δx, y + δy)− f(x, y)

= [f(x+ δx, y + δy)− f(x+ δx, y)]

+ [f(x+ δx, y)− f(x, y)] .

Taylor expanding the second term in square brackets,
we have

f(x+ δx, y)− f(x, y) = fx(x, y)δx+ o(δx) .

Similarly,

f(x+δx, y+δy)−f(x+δx, y) = fy(x+δx, y)δy+o(δy) .

This involves the partial derivative fy evaluated at (x+
δx, y). We can expand this about the point (x, y) using

fy(x+ δx, y) = fy(x, y) + fyx(x, y)δx+ o(δx) .

Putting this together, we find

δf = [fy(x, y) + fyx(x, y)δx+ o(δx)] δy + o(δy)

+ fx(x, y)δx+ o(δx) . (22)

Taking the limit as δx, δy → 0, and defining the differ-
ential of f as

df = lim
δx,δy→0

δf ,

we obtain the multivariate chain rule in differential form.
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Theorem (Chain rule for partial derivatives). The dif-
ferential df of the function f is related to the differentials
of its arguments dx and dy as

df =
∂f

∂x
dx+

∂f

∂y
dy . (23)

Note that the remaining terms in Eq. (22) all go to zero
faster than δx or δy in the limit δx, δy → 0.

We can now use the multivariate chain rule to calcu-
late df/dt along the path (x(t), y(t)). Dividing by δt in
Eq. (22) and then taking the limit, we have

d

dt
f(x(t), y(t)) = lim

δt→0

δf

δt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
. (24)

Note that, since x(t) and y(t) are functions of t alone,
their ordinary derivatives appear in this expression.

Another commonly occuring case is where the path is
parameterised by one of the coordinates. For example,
y may be specified as y(x) so that along the path we
have f(x, y(x)), which is a function of x. The rate of
change of this function with respect to x is

df

dx
=
∂f

∂x

dx

dx
+
∂f

∂y

dy

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
. (25)

Note that f changes both because the first argument
of the function (x) is changing and because the second
argument (y) changes as x changes.

3.3.1 Integral form of the chain rule

The chain rule, Eq. (23), can be integrated along a path
to get the change in the function f between the start-
and end-points:

∆f =

∫
df =

∫ (
∂f

∂x
dx+

∂f

∂y
dy

)
.
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If the path is parameterised as (x(t), y(t)), we have

∆f =

∫
df

dt
dt =

∫ (
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt .

For given start- and end-points, the result will not de-
pend on the particular path that is chosen.

As an example, consider integrating from point A =
(x1, y1) to B = (x2, y2). If we consider the two paths
shown in the figure to the right, for that going via C =
(x2, y1), we have

∆f =

∫ x2

x1

∂f

∂x
(x, y1) dx+

∫ y2

y1

∂f

∂y
(x2, y) dy

= [f(x2, y1)− f(x1, y1)] + [f(x2, y2)− f(x2, y1)]

= f(x2, y2)− f(x1, y1) .

For the path going via D = (x1, y2), we have

∆f =

∫ y2

y1

∂f

∂y
(x1, y) dy +

∫ x2

x1

∂f

∂x
(x, y2) dx

= [f(x1, y2)− f(x1, y1)] + [f(x2, y2)− f(x1, y2)]

= f(x2, y2)− f(x1, y1) ,

which is the same as going via C.

3.4 Applications of the multivariate chain rule

3.4.1 Change of variables

The chain rule naturally plays a central role when we
change the independent variables, for example through
a coordinate transformation.

Example. Consider transforming from Cartesian coor-
dinates (x, y) to plane-polar coordinates (r, θ), with

x = r cos θ , y = r sin θ . (26)

The original function f(x, y) can be thought of as a func-
tion of r and θ, i.e., f(x(r, θ), y(r, θ)). To compute the
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partial derivatives with respect to r and θ, we use the
chain rule. For r, we have

∂f

∂r

∣∣∣∣
θ

=
∂f

∂x

∣∣∣∣
y

∂x

∂r

∣∣∣∣
θ

+
∂f

∂y

∣∣∣∣
x

∂y

∂r

∣∣∣∣
θ

=
∂f

∂x

∣∣∣∣
y

cos θ +
∂f

∂y

∣∣∣∣
x

sin θ ,

and for θ,

∂f

∂θ

∣∣∣∣
r

=
∂f

∂x

∣∣∣∣
y

∂x

∂θ

∣∣∣∣
r

+
∂f

∂y

∣∣∣∣
x

∂y

∂θ

∣∣∣∣
r

= − ∂f

∂x

∣∣∣∣
y

r sin θ +
∂f

∂y

∣∣∣∣
x

r cos θ .

3.4.2 Implicit differentiation

Consider the expression f(x, y, z) = c, for some constant
c. This defines a surface in 3D space, and so it implic-
itly defines a functional relationship between one of the
coordinates x, y and z and the other two, i.e.,

z = z(x, y) or x = x(y, z) or y = y(x, z) .

Depending on the function f(x, y, z), we may not be able
to express these functional relationships in closed form.
However, we can still evaluate their partial derivatives
using implicit differentiation.

Example. Consider

xy + y2z + z5 = 1 . (27)

Finding x(y, z) is straightforward since x only appears
linearly. To determine y(x, z) we have to solve a quadratic
equation. However, we cannot find z(x, y) explicitly
since this would require solving a quintic equation.

Despite this, we can still determine ∂z/∂x|y, for exam-
ple, by taking the derivative of Eq. (27) with respect to
x, holding y constant, using implicit differentiation:

y + y2 ∂z

∂x

∣∣∣∣
y

+ 5z4 ∂z

∂x

∣∣∣∣
y

= 0 ,
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so that
∂z

∂x

∣∣∣∣
y

= − y

y2 + 5z4
.

Generally, given f(x, y, z) = c, the chain rule (extended
to three variables) gives

0 = df =
∂f

∂x

∣∣∣∣
y,z

dx+
∂f

∂y

∣∣∣∣
x,z

dy +
∂f

∂z

∣∣∣∣
x,y

dz .

Note that we cannot vary x, y and z independently as
we must stay in the surface. We can find the rate of
change of z with x at fixed y from

0 =
∂f

∂x

∣∣∣∣
y,z

∂x

∂x

∣∣∣∣
y︸ ︷︷ ︸

=1

+
∂f

∂y

∣∣∣∣
x,z

∂y

∂x

∣∣∣∣
y︸ ︷︷ ︸

=0

+
∂f

∂z

∣∣∣∣
x,y

∂z

∂x

∣∣∣∣
y

.

Therefore
∂z

∂x

∣∣∣∣
y

= −
∂f/∂x|y,z
∂f/∂z|x,y

. (28)

We can similarly find that

∂x

∂y

∣∣∣∣
z

= −
∂f/∂y|x,z
∂f/∂x|y,z

,
∂y

∂z

∣∣∣∣
x

= −
∂f/∂z|x,y
∂f/∂y|x,z

,

and so the relation

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1 .

Note that normal reciprocal rules apply for partial deriva-
tives, provided the same variables are being held con-
stant. For example, for f(x, y, z) = c, similarly to Eq. (28)
we have

∂x

∂z

∣∣∣∣
y

= −
∂f/∂z|x,y
∂f/∂x|y,z

,

so that
∂z

∂x

∣∣∣∣
y

=
1

∂x/∂z|y
.
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Figure 1: Contributions to the change in an integral when a parameter
α appearing in the integrand, f(x;α), and the limits, x = a(α) and
x = b(α), is varied.

3.4.3 Differentiation of an integral with respect to its param-
eters

Consider a family of functions f(x;α) where the param-
eter α labels the different members of the family. Define
the integral

I(α) =

∫ b(α)

a(α)

f(x;α) dx ,

where we have allowed the limits of the integral to de-
pend on the parameter also. What is dI/dα?

Theorem (Differentiation of an integral w.r.t. a param-
eter). The derivative of I(α) is

d

dα

∫ b(α)

a(α)

f(x;α) dx =

∫ b(α)

a(α)

∂f

∂α
(x;α) dx

+ f(b;α)
db

dα
− f(a;α)

da

dα
. (29)
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Proof. We have

dI

dα
= lim

δα→0

1

δα

[∫ b(α+δα)

a(α+δα)

f(x;α + δα) dx

−
∫ b(α)

a(α)

f(x;α) dx

]

= lim
δα→0

1

δα

[∫ b(α)

a(α)

f(x;α + δα)− f(x;α) dx

]

+ lim
δα→0

1

δα

∫ b(α+δα)

b(α)

f(x;α + δα) dx

− lim
δα→0

1

δα

∫ a(α+δα)

a(α)

f(x;α + δα) dx . (30)

The first term on the right reduces to the integral of
∂f/∂α between a and b. For the second term, we can
use the mean-value theorem to write

lim
δα→0

1

δα

∫ b(α+δα)

b(α)

f(x;α + δα) dx = lim
δα→0

[
f(x̄;α + δα)

×
(
b(α + δα)− b(α)

δα

)]
,

where, inside the limit, b(α) ≤ x̄ ≤ b(α + δα). Taking
the limit gives

lim
δα→0

1

δα

∫ b(α+δα)

b(α)

f(x;α + δα) dx = f(b;α)
db

dα
.

The third term in Eq. (30) is handled similarly, and
putting the three terms together establishes Eq. (29).
The origin of these three terms is illustrated in Fig. 1.

Example. Consider

I(λ) =

∫ λ

0

e−λx
2

dx .

Then
dI

dλ
= e−λ

3 −
∫ λ

0

x2e−λx
2

dx .



§1.1 Extra

If f(x) = o(g(x)) as x → x0, then af(x) = o(g(x)) as x → x0 for finite a.

Aside: Non examinable
Sketch proof of Taylor’s Theorem. Start from FTC∫ x

0
f ′(t) dt = f(x) − f(0)

=⇒ f(x) = f(0) +
∫ x

0
f ′(t) dt

= f(0) +
∫ x

0

d(t − x)
dt

∗ f ′(t) dt

= f(0) + [(t − x)f ′(t)]t=x
t=0 −

∫ t

0
(t − x)f ′′(t) dt

= f(0) + xf ′(0) − 1
2

∫ t

0

d(t − x)2

dt
f ′′(t) dt

= f(0) + xf ′(0) − 1
2

[(t − x)2f ′′(t)]t=x
t=0 −

∫ t

0
+1

2

∫ t

0
(t − x)2f ′′′(t) dt

= f(0) + xf ′(0) + 1
2

x2f ′′(0) + 1
2

∫ t

0
(t − x)2f ′′′(t) dt

...

= f(0) + xf ′(0) + x2

2!
f ′′(0) + · · · + xn

n!
f (n)(0) + 1

n!

∫ x

0
(t − x)nf (n+1)(t) dt

By MVT the remainder = somehow

= x(n+1)

(n + 1)!
f (n+1)(xn) where xn ∈ [0, x]

(q12, sheet 1)

i.

p(V, S) :

dp = ∂p

∂V

∣∣∣∣
S

dV + ∂p

∂S

∣∣∣∣
V

dS

Actually S = S(V, T )

so, dS = ∂S

∂V

∣∣∣∣
T

dV + ∂S

∂T

∣∣∣∣
V

dT
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=⇒ dp =
(

∂p

∂V

∣∣∣∣
S

+ ∂p

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T

)
dV + ∂p

∂S

∣∣∣∣
V

∂S

∂T

∣∣∣∣
V

dT

ii.

We want ∂U

∂V

∣∣∣∣
T

and ∂U

∂T

∣∣∣∣
V

: U(V, T )

We are given dU = TdS − pdV

= T
∂S

∂T

∣∣∣∣
V︸ ︷︷ ︸

≡ ∂U
∂T |

V

dT +
(

T
∂S

∂V

∣∣∣∣
T

− p

)
︸ ︷︷ ︸

≡ ∂U
∂V |

T

dV

3.4.3 Differentiation of an integral with respect to its parameters

Example 1.1
Suppose we want to evaluate∫ ∞

0
xne−x dx where n is an integer

Let I(λ) =
∫ ∞

0
e−λx dx = 1

λ
dn

dλn
I =

∫ ∞

0
(−x)ne−λx dx = (−1)n n!

λn+1

set λ = 1 and we get
∫ ∞

0
xne−x dx = n!

33
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II. FIRST-ORDER LINEAR DIFFERENTIAL
EQUATIONS

We now start to investigate differential equations proper.
As noted in the Introduction, a differential equation is
an equation involving derivatives of the dependent vari-
able with respect to the independent variable(s).

Unlike regular, algebraic equations, the solution of a dif-
ferential equation is a function that satisfies the equa-
tion. To obtain a unique solution requires specifying
further suitable boundary conditions.

In this part of the course we shall consider first-order
differential equations, where the highest derivative that
appears is, for example, dy/dx.

1 Exponential function

As we shall see, the exponential function plays a key role
in the solution of linear, first-order equations (we shall
define linearity shortly). We therefore begin with a brief
recap of the properties of the exponential function.

Definition (Exponential function). The exponential
function is defined by the infinite series

exp(x) ≡ 1 + x+
x2

2!
+
x3

3!
+ · · ·

=
∞∑
n=0

xn

n!
. (1)

Using the binomial theorem (see Examples Sheet 1 for
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an alternative approach) this can also be written as

exp(x) = lim
k→∞

(
1 +

x

k

)k
(2)

= lim
k→∞

[
1 + k

(x
k

)
+
k(k − 1)

2!

(x
k

)2
+ · · ·

]
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

Differentiating the series definition (1) term by term, we
see that

d exp(x)

dx
= 1 + 2× x

2!
+ 3× x2

3!
+ · · ·

= exp(x) . (3)

Since exp(0) = 1, we can alternatively define the expo-
nential function as the unique solution of the differential
equation

df

dx
= f(x) with f(0) = 1.

It follows that ∫ exp(x)

1

dy

y
= x . (4)

From this follows one of the main properties of exponen-
tials:

exp(x1 + x2) = exp(x1) exp(x2) . (5)

To see this, note that, from Eq. (4),

x1 + x2 =

∫ exp(x1)

1

dy

y
+

∫ exp(x2)

1

dy

y
.

If we now make the variable substitution u = exp(x1)y
in the second term on the right, we have

x1 + x2 =

∫ exp(x1)

1

dy

y
+

∫ exp(x1) exp(x2)

exp(x1)

du

u

=

∫ exp(x1) exp(x2)

1

dy

y
. (6)
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However, from Eq. (4) we also have

x1 + x2 =

∫ exp(x1+x2)

1

dy

y
.

Since the right-hand side of this expression must equal
the right-hand side of Eq. (6) for all x1 and x2, we es-
tablish the property (5). (It may also be shown rather
more directly from the limit definition in Eq. 2.)

The property in Eq. (5) is reminiscent of powers. Com-
bining with exp(0) = 1, we can write

exp(x) = ex , (7)

where the value of e is

e = exp(1) = lim
k→∞

(
1 +

1

k

)k
= 2.718 . . . .

The inverse function of exp(x) is denoted ln(x), so that

exp(lnx) = elnx = x .

This is sometime written as the logarithm to the base-e,
i.e., lnx = loge x and referred to as the natural logarithm
of x.

The natural logarithm allows us to write1 (for real a > 0)

ax =
(
eln a
)x

= ex ln a ,

from which it follows that

dax

dx
= (ln a)ex ln a = (ln a)ax .

The exponential function plays a prominent role in the
analysis of differential equations since it is an eigenfunc-
tion of the derivative operator.

1While rational powers of a are defined directly in terms of repeated multiplication
and roots, e.g., a2/3 is the (positive) cube root of a×a, this equation essentially defines
what it means to raise a number to an irrational power. An alternative approach is to
define ax in terms of the limit of a sequence of terms axn , where the xn are rational
but have x as their limit.
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Definition (Eigenfunction). An eigenfunction of the
derivative operator is a function that is unchanged, up
to a multiplicative scaling by the eigenvalue, under the
action of the operator. That is,

df

dx
= λf(x) ,

where f(x) is the eigenfunction and λ is the eigenvalue2.

The eigenfunctions of d/dx are the functions eλx since

d

dx
eλx = λeλx .

2 First-order linear differential equations

Differential equations of this form have the following
properties.

• Linear – a differential equation is linear if the de-
pendent variable, y say, and its derivatives only ap-
pear linearly.

• First order – a differential equation is first order
if the higest derivative that appears is first order,
i.e., dy/dx.

2.1 Homogeneous, first-order linear differential equations

We shall initially specialise further to consider homoge-
neous equations with constant coefficients.

• Homogeneous – a differential equation in which
all terms involve the dependent variable (e.g., y) or
its derivatives, so that y = 0 is a solution.

• Constant coefficients – a differential equation has
constant coefficients if the independent variable (e.g.,
x) does not appear explicitly.

2The terminology “eigen” is from the German for “own”.
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Example. Consider the first-order, linear, homoge-
neous differential equation

5
dy

dx
− 3y = 0 . (8)

Let us try a solution y = Aeλx; then

dy

dx
= Aλeλx = λy ,

so to be a solution we require 5λ − 3 = 0. This is an
example of a characteristic equation and the solution is
λ = 3/5. Since this is a linear, homogeneous equation,
the solution y = Ae3x/5 holds for any A.

Generally, for any linear, homogeneous differential equa-
tion (so not necessarily first order), any constant multi-
ple of a solution is also a solution.

Moreover, it can be shown that an nth-order linear dif-
ferential equation has precisely n independent solutions.
Specialising to the case of the first-order linear equa-
tion (8), we see that y = Ae3x/5 is the general solution.
A specific unique solution is obtained by specifying a
suitable boundary condition for the dependent variable.
For example, the value of y at x = 0 determines the
constant A.

2.1.1 Discrete equations

It is interesting to compare the solution of Eq. (8) with
that of a related discrete equation. A discrete equation
involves a function evaluated at a discrete set of points.

Suppose we have 5dy/dx − 3y = 0 and the boundary
condition y(0) = y0. We know that the solution is

y(x) = y0e
3x/5 .

Consider now an approximate solution to this differen-
tial equation, whereby we approximate the derivative by
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a finite difference. In particular, consider discretising
the equation at points {xn}, spaced by h. The values
of y at these points are {yn} and we approximate the
derivative at xn by

dy

dx

∣∣∣∣
xn

≈ yn+1 − yn
h

.

(This is called the forward Euler scheme – it is not par-
ticularly good for numerical analysis and better schemes
do exist, but it is fine to illustrate the key idea here.)
The original equation (8) in discrete form becomes

5

(
yn+1 − yn

h

)
− 3yn ≈ 0 ⇒ yn+1 ≈

(
1 +

3h

5

)
yn .

(9)

The final relation in Eq. (9) is an example of a recurrence
relation. If we apply this repeatedly, we find

yn =

(
1 +

3h

5

)
yn−1 =

(
1 +

3h

5

)2

yn−2 =

(
1 +

3h

5

)n
y0 .

If we now suppose that x0 = 0 and xn = nh = x, i.e., we
take n steps to go from x = 0 to the point of interest,
x, we can write

yn = y0

(
1 +

3

5

x

n

)n
.

In the limit as n→∞, we expect this to agree with the
exact solution y(x) = y0e

3x/5. This is indeed the case
since, recalling Eq. (2), we have

lim
n→∞

yn = lim
n→∞

y0

(
1 +

3x/5

n

)n
= y0 exp(3x/5) .

As shown in the figure to the right, the larger n is, the
larger the value of yn at the given point x.
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2.1.2 Series solution

At this point, it is useful to introduce and illustrate a
powerful technique for solving differential equations that
we shall have much more to say about later in the course.
The idea is to look for solutions in the form of an infinite
power series,3 i.e.,

y(x) =
∞∑
n=0

anx
n . (10)

Substituting this expansion into the differential equation
determines the coefficients an.

Example. Consider again

5
dy

dx
− 3y = 0 . (11)

Differentiating Eq. (10) gives

dy

dx
=

∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1 .

Multiplying Eq. (11) by x (for convenience), we have
terms involving

xy′ =
∞∑
n=1

nanx
n ,

xy =
∞∑
n=0

anx
n+1 =

∞∑
m=1

am−1x
m ,

where in the second line we have let m = n + 1. Rela-
belling m→ n in this summation, and substituting into
Eq. (11) (after multiplying through by x), we find

5
∞∑
n=1

nanx
n − 3

∞∑
n=1

an−1x
n = 0

⇒
∞∑
n=1

xn (5nan − 3an−1) = 0 .

3We shall see later that not all differential equations admit solutions of this form,
but significant classes of equations do (or at least a close generalisation).
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Since this must hold for all x, we must have

5nan − 3an−1 = 0 ⇒ an =
3

5n
an−1 (n ≥ 1) .

Iterating this recursion relation, we have

an =
3

5n
an−1 =

(
3

5

)2
1

n(n− 1)
an−2 = · · · =

(
3

5

)n
1

n!
a0 ,

so that

y(x) = a0

∞∑
n=0

1

n!

(
3x

5

)n
= a0e

3x/5 .

In the final term we have identified the infinite series as
the power series expansion of exp(3x/5); see Eq. (1).

2.2 Forced (inhomogeneous) equations

So far we have considered homogeneous differential equa-
tions. However, differential equations can also involve
terms that are explicit functions of the independent vari-
able and do not include the dependent variable nor its
derivatives. Such equations are called inhomogeneous
or forced equations and y = 0 is no longer a (trivial)
solution.

We shall consider two simple, but important, types of
forcing terms that break homogeneity.

2.2.1 Constant forcing

Constant forcing involves introducing a constant term
in a differential equation.

Example. Consider

5
dy

dx
− 3y = 10 ,

where now we have added the constant term on the
right-hand side. The general method for solving such
forced, linear equations is as follows.
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1. Find any solution of the forced equation. This is
called the particular integral and we shall denote it
by yp(x). This may require some guesswork. For
our example, we might spot that there is a solution
with y = const., in which case we would have

yp(x) = −10/3 .

2. Now write the general solution in the form

y(x) = yp(x) + yc(x) ,

involving the particular integral and a complemen-
tary function yc(x). Since the differential equation
is linear in y and its derivatives, the complementary
function must satisfy the homogeneous equation:

5
dyc
dx
− 3yc = 0 ⇒ yc(x) = Ae3x/5 .

3. Combining, we have the full general solution

y(x) = −10

3
+ Ae3x/5 .

Any boundary conditions may now be applied (to
the full solution y) to determine the constant A.

This method of solving linear, forced equations is gen-
eral and is not restricted to first-order equations (with
constant coefficients).

2.2.2 Eigenfunction forcing

A second particularly simple form of forcing is when the
forcing is an eigenfunction of the underlying differential
operator.

Example. Consider a radioactive material, in which
isotope A decays into isotope B at a rate proportional
to the number a(t) of remaining nuclei of A, and B
decays into C at a rate proportional to the number b(t)
of remaining nuclei of B. Determine b(t).
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We have

da

dt
= −kaa ,

db

dt
= kaa− kbb ,

where ka and kb are the appropriate rate constants. We
can solve the first equation for a(t) directly to obtain

a(t) = a0e
−kat ,

where a0 is the number of A nuclei at t = 0. Substituting
into the rate equation for b(t) gives

db

dt
+ kbb = kaa0e

−kat . (12)

The forcing term in Eq. (12), being an exponential func-
tion, is an eigenfunction of the differential operator on
the left-hand side. This suggests we try a particular
integral

bp = Ce−kat,

for some suitable choice of the constant C. Substituting
bp into Eq. (12) we obtain

−kaC + kbC = kaa0 ⇒ C =
ka

kb − ka
a0 ,

provided ka 6= kb.

As before, we then consider the general solution b = bc+
bp, where bc is the solution of the homogeneous equation:

dbc
dt

+ kbbc = 0 ⇒ bc = De−kbt ,

for some constant D, and so

b(t) =
ka

kb − ka
a0e
−kat +De−kbt .

A particular situation of interest is when b = 0 at t = 0,
i.e., the isotope B only appears due to decay of isotope
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A. In this case,

b(t) =
ka

kb − ka
a0
(
e−kat − e−kbt

)
,

⇒ b(t)

a(t)
=

ka
kb − ka

(
1− e(ka−kb)t

)
.

Typical time variations of a(t) and b(t) are shown in the
figure to the right. Analyses of this type allow rocks
and other materials to be dated by measuring the ratio
of isotopes (e.g., carbon dating).

The solution we obtained in this example is not valid
for ka = kb. For this case, we could proceed by guessing
a suitable alternative particular integral bp(t). However,
we shall see below an alternative approach that will also
inform the choice of a suitable particular integral.

2.3 Non-constant coefficients

So far we have considered linear, first-order differential
equations with constant coefficients. We now drop the
last restriction so that the coefficients of y and dy/dx
are allowed to be functions of x.

Consider the general form of a first-order linear differ-
ential equation:

a(x)
dy

dx
+ b(x)y = c(x) .

Dividing through by a(x), we obtain the standard form:

dy

dx
+ p(x)y = f(x) . (13)

We can always solve equations of this form by multiply-
ing through by an integrating factor µ(x):

µ
dy

dx
+ (µp)y = µf . (14)
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The idea is to choose the integrating factor so that the
left-hand side is the derivative d(µy)/dx and the equa-
tion can be integrated directly. From the product rule,
we require

dµ

dx
= µp ⇒ 1

µ

dµ

dx
= p .

Integrating with respect to x we have∫
p dx =

∫
1

µ

dµ

dx
dx = lnµ .

Therefore, the integrating factor is

µ(x) = exp

[∫ x

p(u)du

]
, (15)

which is unique up to an irrelevant constant factor.

Since, by construction, Eq. (14) is equivalent to

d

dx
(µy) = µf ,

we have

µ(x)y(x) =

∫ x

µ(u)f(u)du ,

from which y(x) can be determined straightforwardly.

Example. Consider

x
dy

dx
+ (1− x)y = 1 ,

or, in standard form,

dy

dx
+

(
1

x
− 1

)
y =

1

x
.

It follows that p(x) = 1/x− 1 and so, from Eq. (15),

µ(x) = exp

[∫ x

p(u) du

]
= exp

[∫ x(1

u
− 1

)
du

]
= exp (ln x− x)

= xe−x .
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Therefore,

d

dx

(
xe−xy

)
= e−x

⇒ xe−xy = −e−x + C

⇒ y = −1

x
+
C

x
ex ,

where C is a constant to be determined from initial or
boundary conditions.

In particular, if we require y(x) to be finite as x→ 0 we
must have C = 1, and so

y =
ex − 1

x
.

2.3.1 Radioactive decay example revisited

It is instructive to reconsider the example of radioactive
decay discussed above, now using the method of an inte-
grating factor. In particular, this will allow us to handle
easily the case ka = kb.

Recall Eq. (12), which we repeat here for convenience:

db

dt
+ kbb = kaa0e

−kat .

This is already in standard form, with p(t) = kb. It
follows that the integrating factor

µ(t) = exp

[∫ t

kbdu

]
= ekbt ,

and so multiplying through in Eq. (12), we have

d

dt

(
ekbtb

)
= kaa0e

(kb−ka)t . (16)

We now consider the two cases, ka 6= kb and ka = kb,
separately.
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1. If ka 6= kb, the right-hand side of Eq. (16) still varies
with t. Integrating, we find

ekbtb =
ka

kb − ka
a0e

(kb−ka)t +D ,

⇒ b(t) =
ka

kb − ka
a0e
−kat +De−kbt ,

exactly as before.

2. If ka = kb = k, the right-hand side of Eq. (16) is
independent of t. Integrating in this case, we have

ektb = ka0t+D ,

⇒ b(t) = ka0te
−kt +De−kt .

Note that in the case ka = kb = k, an appropriate par-
ticular integral of Eq. (12) is

bp(t) = ka0te
−kt ,

rather than being simply bp(t) ∝ e−kt.



§2.1 Extra

exp (x1) exp (x2) = lim
k→∞

(
1 + x1

k

)k (
1 + x2

k

)k

= lim
k→∞

[(
1 + x1

k

)(
1 + x2

k

)]k

= lim
k→∞

[
1 + x1 + x2

k
+ x1x2

k2

]k

= lim
k→∞

[
1 +

(
k

1

)
1
k

(
x1 + x2 + x1x2

k

)
+ . . .

]k

= lim
k→∞

[
1 + (x1 + x2) + (x1 + x2)2

2!
+ . . .

]
= exp (x1 + x2)

48
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III. NONLINEAR, FIRST-ORDER
DIFFERENTIAL EQUATIONS

Having studied linear, first-order differential equations,
we now consider nonlinear first-order equations. In this
case, the dependent variable (e.g., y(x)) appears nonlin-
early. Such equations have a rich phenomenology.

In general, a first-order differential equation takes the
form

Q(x, y)
dy

dx
+ P (x, y) = 0 , (1)

for general, non-trivial functions P and Q. (This is not
the most general form, since dy/dx could also appear
nonlinearly, but we will not consider such cases here.)

1 Separable equations

Definition (Separable equation). A first-order differ-
ential equation is separable if it can be written in the
form

q(y)dy = p(x)dx ,

and so all the terms involving y explicitly can be col-
lected to one side of the equation, and all the terms
involving x explicitly can be collected to the other.

Separable equations can be solved directly by integra-
tion: ∫

q(y) dy =

∫
p(x) dx .

Example. Consider(
x2y − 3y

) dy
dx
− 2xy2 = 4x .

Rearranging,

dy

dx
=

4x+ 2xy2

x2y − 3y
=

(
2x

x2 − 3

)(
2 + y2

y

)
.
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Therefore

y

2 + y2
dy =

2x

x2 − 3
dx ,

⇒ 1

2
ln
(
y2 + 2

)
= ln

(
x2 − 3

)
+ C ,

⇒
(
y2 + 2

)1/2
= A

(
x2 − 3

)
,

where C is an arbitrary integration constant and A =
eC .

2 Exact equations

Definition (Exact equation). Equation (1) is an ex-
act equation if and only if the differential P (x, y)dx +
Q(x, y)dy is exact, i.e., there exists a function f(x, y)
such that

df = P (x, y)dx+Q(x, y)dy .

It follows that if Eq. (1) is exact, df = 0 and so f(x, y) =
const. is the solution. This is generally an implicit re-
lation between x and y, which satisfies the differential
equation.

If P (x, y)dx + Q(x, y)dy is an exact differential of f ,
then df = P (x, y)dx + Q(x, y)dy. However, from the
chain rule in differential form,

df =
∂f

∂x
dx+

∂f

∂y
dy ,

so we must have

∂f

∂x
= P and

∂f

∂y
= Q . (2)

Solving these equations determines the function f(x, y)
(see the example below).

It follows from Eq. (2) that

∂2f

∂y∂x
=
∂P

∂y
and

∂2f

∂x∂y
=
∂Q

∂x
.
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Since mixed second partial derivatives commute, we must
have

∂P

∂y
=
∂Q

∂x
(3)

if P (x, y)dx+Q(x, y)dy is exact.

The converse is not necessarily true: it is possible for
Eq. (3) to hold but Pdx + Qdy not to be exact. Equa-
tion (3) is therefore a necessary but not sufficient condi-
tion for the differential to be exact. However, if it holds
throughout some simply-connected domain, then it can
be shown that the differential is exact in that domain.

Definition (Simply-connected domain). A domain D
is simply-connected if it is path-connected (i.e., every
pair of points can be connected by a path in D) and any
closed curve can be continuously shrunk to a point in D
without leaving D.

Examples. In 2D, a disk is simply-connected, but a
disk with a hole in the middle is not (see the figure to
the right for more general examples). The 2D surface of
a sphere in 3D is simply-connected, but that of a torus
(e.g., a ring doughnut) is not.

Theorem. If
∂P

∂y
=
∂Q

∂x

throughout a simply connected domain D, then Pdx +
Qdy is an exact differential of a single-valued function
f(x, y) in D, i.e., there exists a single-valued function
f(x, y) in D such that df = Pdx+Qdy.

Aside: an inexact differential on a non-simply-connected domain

Consider the differential Pdx+Qdy with

P = − y

x2 + y2
and Q =

x

x2 + y2
.

We have
∂P

∂y
=

y2 − x2
(x2 + y2)2

=
∂Q

∂x
,

This curve will leave D as it 
is shrunk
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so that Eq. (3) is satisifed away from the origin, (x, y) = (0, 0). It follows
that the differential is exact in a simply-connected region excluding the
origin. Indeed, a suitable potential is θ(x, y), where θ is the polar angle
of plane-polar coordinates, with

x = r cos θ and y = r sin θ .

This follows since tan θ = y/x gives, for example,

1

cos2 θ

∂θ

∂x
= − y

x2
⇒ ∂θ

∂x
= − y

x2 + y2
= P.

However, the differential is not exact in the non-simply-connected region
0 < x2 + y2 ≤ 1 (which excludes the origin) since it cannot be written
as the differential of a single-valued function throughout this domain.
Rather, the potential θ changes by 2π in traversing any closed path that
encircles the origin once.

Example. Consider

6y(y − x)
dy

dx
+ 2x− 3y2 = 0 (4)

⇒
(
2x− 3y2

)
dx+ 6y(y − x)dy = 0 ,

so that

P (x, y) = 2x− 3y2 and Q(x, y) = 6y2 − 6xy .

It follows that

∂P

∂y
= −6y =

∂Q

∂x
,

and so the differential Pdx+Qdy is exact in any simply-
connected domain.

Furthermore, the solution f(x, y) = const. must satisfy
the two equations

∂f

∂x
= 2x− 3y2 = P ;

∂f

∂y
= 6y2 − 6xy = Q . (5)

If we integrate the first equation with respect to x, re-
membering that y is being held constant in the partial
derivative ∂f/∂x, we have

f(x, y) = x2 − 3xy2 + h(y) ,
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for some function h(y). In general, this term is a func-
tion of y. If we take a partial derivative with respect to
x keeping y constant, h(y) will make no contribution.

Taking the partial derivative of this f(x, y) with respect
to y and comparing to the second equation in (5), we
have

−6xy +
dh

dy
= 6y2 − 6xy

⇒ dh

dy
= 6y2

⇒ h(y) = 2y3 + C ,

for some constant C.

Therefore the solution to Eq. (4) is

f(x, y) = x2 − 3xy2 + 2y3 = const.

This can, of course, be verified by direct substitution.

3 Solution curves and isoclines

It is not always possible to solve nonlinear equations
explicitly, but we can gain insight into the “flow” of
solutions using various graphical methods. We shall in-
troduce some of these methods in this section.

3.1 Solution curves

Consider a first-order differential equation of the form

dy

dt
= f(t, y) .

Each initial condition, e.g., specifying y(0) = y0 at t = 0,
will generate a distinct solution curve (or trajectory);
see the figure to the right.

Example. Consider the nonlinear equation

dy

dt
= t(1− y2) . (6)

Not necessarily t = 0
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This equation is separable:

dy

1− y2
= tdt ,

and can be integrated (using partial fractions is helpful)
to obtain

1

2
ln

∣∣∣∣1 + y

1− y

∣∣∣∣ =
1

2
t2 + C ,

where C is a constant. Therefore

y =
A− e−t2

A+ e−t2
, (7)

for some further constant A (with A = e2C for |y| < 1,
and A = −e2C for |y| > 1). This general solution of
the differential equation produces a family of solution
curves, parameterised by A.

We can express the parameter A in terms of, say, the
value y(0) = y0 using

y(0) =
A− 1

A+ 1
⇒ A =

1 + y0

1− y0
.

The solution curves given by Eq. (7) are plotted in Fig. 1.

In this example, we could solve the differential equation
exactly. However, let us now consider whether we can
understand the key properties of the family of solution
curves without solving the equation explicitly. This is
important since we may not be able to solve a given
(nonlinear) differential equation in closed form.

We first note, from Eq. (6), that ẏ = 0 for all t if y = ±1.
There are therefore two constant solutions, y = ±1.

To proceed further, it is helpful to consider the slope
field of the differential equation.

3.2 Slope field and isoclines

In the differential equation

dy

dt
= f(t, y) ,
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Figure 1: Solution curves y(t) of the differential equation (6), as given
by Eq. (7). The variation of the initial value y0 with the parameter A
is also indicated. Note that A changes discontinuously through y0 = 1.
Also, the solution curves are discontinuous where e−t2 = −A, for A in
the range −1 < A < 0.

the function f(t, y) on the right-hand side determines
the gradient (or slope) of the solution curve through the
point (t, y). The slope field represents these gradients by
short straight-line segments, one centred at each point (a
regular grid in the t–y plane is often used), with gradient
f(t, y).

By construction, the slope field at a given point is tan-
gent to the solution curve through that point. It there-
fore tells us the direction in which the solution curve
flows.

It is often helpful to supplement the slope field with iso-
clines, which are curves along which f(t, y) is constant.

For the example above, Eq. (6), we have

f(t, y) = t
(
1− y2

)
so that, for t > 0, ẏ < 0 for |y| > 1 and ẏ > 0 for |y| < 1.
The isoclines have

t
(
1− y2

)
= D ⇒ y2 = 1−D/t ,
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where D is a constant that parameterises the isoclines.
Along each isocline, the slope field is constant; see Fig. 2.

By drawing curves through the slope field, we can con-
struct approximations to the solution curves even if we
cannot determine their functional form exactly.

Finally, note that if f(t, y) is a single-valued function,
the solution curves cannot cross in the t–y plane.

4 Fixed (equilibrium) points and stability

In this section, we consider the properties of fixed points
or equilibrium points of differential equations. The anal-
ysis of fixed points typically reveals many important
properties of the solution of the differential equation.

Definition (Fixed/equilibrium point). A fixed point
or equilibrium point of a differential equation dy/dt =
f(t, y) is a constant solution, y = c. This corresponds
to dy/dt = 0 for all t.

In the specific example above, Eq. (6), we have f(t, y) =
t(1− y2) and so there are fixed points at y = ±1. From
consideration of the solution curves shown in Fig. 1, it
is clear that these two fixed points have qualitatively
different character.

Specifically, the solution curves converge towards y = 1
as t increases, while they diverge from y = −1. For
these reasons, the fixed point y = 1 is said to be a stable
fixed point while y = −1 is an unstable fixed point.

Definition (Stability of fixed points). A fixed point
y = c is stable if whenever y is deviated slightly from
c, y → c as t → ∞. A fixed point is unstable if the
devitation grows in magnitude as t→∞.
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Figure 2: Top: isoclines (blue) and the slope field (black sticks) along
these for the differential equation (6). Bottom: the solution curves (red)
are tangent to the slope field everywhere.
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4.1 Perturbation analysis and stability

To determine the stability of a fixed point we can use
“perturbation analysis”. This involves considering the
form of the differential equation in the vicinity of the
fixed point y = c.

Suppose that y = c is a fixed point of the first-order
differential equation dy/dt = f(t, y), so that f(t, c) = 0
for all t. Consider a small perturbation from the fixed
point, which we can write as

y(t) = c+ ε(t) ,

where ε(t) is a small perturbation. Substituting into the
differential equation, we have

dε

dt
= f(t, c+ ε)

= f(t, c) + ε
∂f

∂y
(t, c) +O(ε2)

= ε
∂f

∂y
(t, c) +O(ε2) ,

where we have performed a Taylor expansion in passing
to the second line, and used f(t, c) = 0 in the third.
Sufficiently close to y = c (i.e., for ε suitably small), we
can approximate the evolution of ε with

dε

dt
≈
[
∂f

∂y
(t, c)

]
ε . (8)

This differential equation is linear and so is generally
much simpler to solve than the original (nonlinear) equa-
tion. We can use Eq. (8) to study how the perturbation
grows with time and hence determine the nature of the
fixed point.

Note that if ∂f/∂y = 0 at the fixed point, we must retain
higher-order terms in the Taylor expansion of f(t, c+ ε)
to determine stability.
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Example. For our specific example, Eq. (6), with f(t, y) =
t(1− y2), we have fixed points at y = ±1 and

∂f

∂y
= −2yt =

{
−2t at y = 1 ,

2t at y = −1 .

Therefore, near y = 1,

dε

dt
≈ −2tε ⇒ ε = ε0e

−t2 ,

with ε0 a constant. As t → ∞, ε(t) → 0 for any ε0 and
so y(t)→ 1. It follows that y = 1 is a stable fixed point.

On the other hand, near y = −1,

dε

dt
≈ 2tε ⇒ ε = ε0e

t2 .

Now, |ε(t)| → ∞ as t → ∞, so if y(t) starts in the
vicinity of the fixed point y = −1, it will diverge from
there.1 It follows that y = −1 is an unstable fixed point.

4.2 Autonomous systems and phase portraits

An autonomous system is a special case where dy/dt
is determined only by y, so that the system does not
depend on time explicitly.

Definition (Autonomous system). An autonomous sys-
tem is descibed by a differential equation of the form

dy

dt
= f(y) , (9)

i.e., the derivative dy/dt is only (explicitly) dependent
on y.

The analysis of the stability of the fixed points is more
straightforward for autonomous systems. In particular,

1The linearised equation (8) assumes that ε is small and so we cannot really claim
that |ε| → ∞ at late times. However, we can be sure that the perturbation grows as
t increases.
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if y = c is a fixed point of Eq. (9), perturbation analysis
leads to the particularly simple equation

dε

dt
=

[
df

dy
(c)

]
ε = kε , (10)

where k is a constant for a given fixed point. The solu-
tions of this differential equation are of the form

ε(t) = ε0e
kt ,

where ε0 is a constant. It follows that the stability of
the fixed point is determined by the sign of k.

Therefore, for the autonomous system (9), with fixed
point y = c,

if

{
f ′(c) < 0 ⇒ stable fixed point,

f ′(c) > 0 ⇒ unstable fixed point.

Example (Chemical kinetics). Consider a chemical re-
action A+ B → C +D. Let us start with a0 molecules
of A, b0 of B and no C nor D. Each reaction depletes
the numbers of A and B molecules by one each and in-
creases C and D similarly. We thus have:

A + B → C + D
Number of molecules a(t) b(t) c(t) c(t)
Intitial number of molecules a0 b0 0 0

with a(t) = a0 − c(t) and b(t) = b0 − c(t).

We assume that the rate of reaction is proportional to ab
(as would be appropriate for dilute gases or solutions)
so that

dc

dt
= λab

= λ(a0 − c)(b0 − c) (11)

= f(c) ,

where λ is a positive constant. We thus have an au-
tonomous, first-order, nonlinear differential equation.
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The fixed points are clearly c = a0 and c = b0. Let us
assume that a0 < b0, in which case c = a0 corresponds
to having depleted all A molecules, while c = b0 corre-
sponds to the unphysical case of having depleted all B
molecules (which requires a < 0).

We can analyse the stability by computing df/dc at the
fixed points. We have

df

dc
= λ(2c− a0 − b0) =

{
λ(a0 − b0) at c = a0 ,

λ(b0 − a0) at c = b0 ,

so that c = a0 is a stable fixed point and c = b0 is an
unstable fixed point.

We can illustrate this behaviour with a 1D phase por-
trait, which is a plot of the dependent variable only, with
arrows indicating the evolution with time. An example
is shown to the right.

Finally, we note that we can easily find (exercise!) the
exact solution to Eq. (11) with c(0) = 0:

c(t) =
a0b0

(
1− e−λ(b0−a0)t

)
b0 − a0e−λ(b0−a0)t

.

This is plotted to the right.

Example (Population dynamics and the logistic equa-
tion). The logistic equation is a simple, but widely appli-
cable, model of population dynamics. Suppose we have
a population of size y(t). Let the birth rate be αy, with
α a positive constant. If we model the death rate as βy,
with β a further positive constant, then the dynamics of
the population is described by

dy

dt
= (α− β)y ,

and grows or decays exponentially according to the sign
of α − β (i.e., whether the birth rate exceeds the death
rate or the other way around). Such a model is unre-
alistic, with populations often naturally regulating after
early exponential growth.
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We can improve the model by modifying the death rate.
Suppose that to survive, members of the population
must consume some resource that is limited. Let us
assume that in a given time interval, the probability of
a given member not finding the resource (and so dying)
is proportional to y, since the rest of the population are
also consuming the resource. Adding this to the death
rate, we now have

dy

dt
= (α− β)y − γy2

= λy
(

1− y

Y

)
, (12)

where λ = α − β and Y = λ/γ. This is the differential
logistic equation.

The logistic equation is separable and can be easily solved
exactly. However, let us reconstruct the behaviour from
the phase portrait.

Equation (12) is autonomous with the derivative given
by f(y) = λy(1− y/Y ). The fixed points are y = 0 and
y = Y and

df

dy
= λ

(
1− 2y

Y

)
=

{
λ at y = 0 ,

−λ at y = Y .

For λ > 0, we see that y = 0 is an unstable fixed point
and y = Y is a stable fixed point. A plot of f(y) and
the 1D phase portrait is shown to the right.

When the population is small (y � Y ),

dy

dt
≈ λy

and there is exponential growth for λ > 0. However, as
the population grows, the additional term in the death
rate, −γy2, becomes important and the stable fixed point
y = Y is approached (exponentially).
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4.3 Fixed points in discrete equations

We introduced discrete equations earlier as an approx-
imation to differential equations. Now let us consider
fixed points of discrete equations.

Consider a first-order discrete equation of the form

xn+1 = f(xn) . (13)

Definition (Fixed point of a discrete equation). A fixed
point of a first-order discrete equation is a value of xn
such that xn+1 = xn, i.e.,

f(xn) = xn .

We can investigate the stability of fixed points using a
perturbation analysis, similiar to that used for differen-
tial equations. Suppose that xf is a fixed point and xn
is close to xf . If we write xn = xf + εn, where the {εn}
are small perturbations, the discrete equation (13) gives

xf + εn+1 = f(xf + εn)

≈ f(xf) + εn
df

dx
(xf)

⇒ εn+1 ≈ εn
df

dx
(xf) ,

where we have used f(xf) = xf as xf is a fixed point.

It follows that the iterates {xn} get closer to the fixed
point or diverge from it according to the magnitude of
df/dx at the fixed point. In particular,

if

{
|f ′(xf)| < 1 ⇒ stable fixed point,

|f ′(xf)| > 1 ⇒ unstable fixed point.

Extended example (Logistic map). We illustrate these
ideas with a discrete form of the differential logistic
equation (12) called the discrete logistic equation or the
logistic map:

xn+1 = rxn(1− xn) . (14)
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This simple discrete equation has a remarkably rich phe-
nomenology, some of which we shall explore in this ex-
tended example.

We can relate the logistic map to the differential logistic
equation by approximating dy/dt in the latter with a
finite difference in the time step ∆t:

yn+1 − yn
∆t

= λyn

(
1− yn

Y

)
,

so that

yn+1 = yn + λ∆tyn

(
1− yn

Y

)
= (1 + λ∆t)yn

[
1−

(
λ∆t

Y (1 + λ∆t)

)
yn

]
.

If we write

xn =

(
λ∆t

Y (1 + λ∆t)

)
yn and r = (1 + λ∆t) ,

we recover the logistic map (14).

We are interested in non-negative iterates, xn > 0. If
0 ≤ xn ≤ 1, the map ensures that xn+1 ≥ 0 for r > 0.
Moreover, if r < 4, we are ensured that xn+1 ≤ 1 also.

The fixed points of the logistic map satisfy xn = f(xn),
where f(xn) = rxn(1− xn), and so are given by

xn = 0 or xn = 1− 1

r
.

The fixed point at xn = 1 − 1/r is only in the physical
range for r ≥ 1.

To assess stability, we use

df

dx
= r(1− 2x) =

{
r at x = 0 ,

2− r at x = 1− 1/r .

We see that:

• xn = 0 is a stable fixed point for 0 < r < 1 and is
unstable for r > 1;
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• xn = 1 − 1/r is a stable fixed point for 1 < r < 3,
and is unstable for r > 3.

We can illustrate the evolution of the iterates using what
is sometimes called a cobweb diagram. The idea is to plot
the function f(x) and the line y = x, so that the fixed
points of xn+1 = f(xn) are given by the intersection of
these. Starting at some initial value, say x0, on the x-
axis, we perform the following steps:

1. draw a vertical line from (x0, 0) to where it meets
y = f(x) at the point (x0, f(x0));

2. draw a horizontal line from this point to where it
meets y = x, so that the x value at the intersection
is f(x0), i.e., x1;

3. from this point, draw a vertical line to where it
meets y = f(x), followed by a horizontal line from
there to the intersection with y = x, at which point
the x value is x2; and

4. repeat this sequence of vertical and horizontal lines
as many times as required.

We now illustrate the behaviour of the logistic map with
cobweb diagrams for different ranges of r.

0 < r < 1. In this case we have only a stable fixed
point in the range 0 ≤ xn ≤ 1 and this is at xn = 0.
The iterates rapidly converge to this point, as shown in
the diagram to the right (which has r = 0.5).
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1

Detail's non-examinable
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1 < r < 2. In this case we have an unstable fixed point,
xn = 0, and a stable fixed point, xn = 1 − 1/r, which
occurs to the left of the maximum of f(x) at x = 1/2.
Convergence to the stable fixed point is monotonic (see
diagram to the right for r = 1.5).
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x n
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2 < r < 3. In this case we still have an unstable fixed
point, xn = 0, and a stable fixed point, xn = 1−1/r, but
the stable fixed point occurs to the right of the maximum
of f(x) at x = 1/2. Convergence to the stable fixed point
is now oscillatory (see diagram to the right for r = 2.5).
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3 < r < 1 +
√

6. For r > 3, the two fixed points are
both unstable. For 3 < r < 1 +

√
6 ≈ 3.44949, for

almost all starting points the iterates approach oscilla-
tions between two values on either side of the fixed point
xn = 1− 1/r, so that xn+2 = xn. This is an example of
a stable limit cycle of period 2. The values in the limit
cycle are stable fixed points of the map for the second
iterates, xn+2 = f [f(xn)], which follows from iterating
the logistic map twice. An example cobweb diagram is
shown to the right for r = 3.25.
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1 +
√

6 < r < 3.54409. In this range, for almost all
starting points the iterates oscillate between four values
with xn+4 = xn. This is an example of a stable limit
cycle of period 4. An example is given to the right for
r = 3.451. Note that the range of r over which the
limit cycle of period 4 is attained is shorter than for the
period-2 cycle.
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3.54409 < r < 3.56995. As r moves through this range,
a stable limit cycle of period 8, then 16, then 32, etc., is
reached. The length of each cycle falls rapidly and the
ratio of succssive intervals asymptotically approaches a
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Figure 3: Bifurcation diagram for the logistic map, Eq. (14). This plots
the asymptotic values of the iterates (for nearly all starting values) as
r is varied. Convergence to a stable fixed point is indicated by the
single branch for r < 3. Beyond this, the diagram bifurcates to a limit
cycle of period 2, then 4, etc., of rapidly decreasing length, before chaotic
behaviour ensues for r > 3.56995. For certain limited ranges of r beyond
this, there are “islands of stability” where the map is non-chaotic.

constant (the Feigenbaum constant, with value approxi-
mately 4.66920). This is an example of a period-doubling
cascade. The cascade ends at r ≈ 3.56995.

r > 3.56995. Beyond the end of the period-doubling
cascade, the map becomes chaotic. For almost all inital
conditions, the iterates no longer converge to oscillation
amongst a finite number of values. Instead, the behavior
is chaotic, with extreme sensitivity to the intial condi-
tions (the example to the right has r = 3.75). There
are, however, a few “islands of stability” – small ranges
of r where the behaviour is non-chaotic and instead the
iterates reach oscillation in a limit cycle.
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The period-doubling cascade, the onset of chaotic be-
haviour and the islands of stability are illustrated in the
bifurcation diagram in Fig. 3. This shows the asymp-
totic value(s) of the iterates as a function of r for nearly
all starting values, with the limit cycles appearing as a
finite number of branches.
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IV. HIGHER-ORDER LINEAR
DIFFERENTIAL EQUATIONS

We now consider linear differential equations where deriva-
tives of the dependent variable of higher order appear,
e.g., d2y/dx2. In particular, we shall focus on second-
order equations but most of the methods in this topic
apply also to higher-order equations.

1 Second-order equations with constant coeffi-
cients

We begin by considering linear, second-order differen-
tial equations with constant coefficients. These take the
form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) , (1)

where a, b and c are constants.

The differential operator on the left of Eq. (1) is linear.

Definition (Linear differential operator). A differen-
tial operator D is linear if for any y1(x) and y2(x), and
constants α and β,

D(αy1 + βy2) = αD(y1) + βD(y2) .

We can exploit linearity of D to solve Eq. (1) in two
steps:

1. find the complementary functions that satisfy the
homogeneous (unforced) equation, i.e.,

a
d2yc
dx2

+ b
dyc
dx

+ cyc = 0 ;

2. find a particular integral yp that satisfies the full
equation.
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A solution to the full equation can be found by adding
the complementary function and particular integral since

D(yc + yp) = D(yc) +D(yp) = 0 + f(x) .

If yc1 and yc2 are linearly independent complementary
functions, then yc1 + yp and yc2 + yp are linearly inde-
pendent solutions of the full equation.

Definition (Linear dependence of functions). A set of
N functions {fi(x)} is linearly dependent if

N∑
i=1

cifi(x) = 0 ,

for N constants {ci}, where at least one of the ci is
nonzero. Otherwise, the functions are linearly indepen-
dent.

Equivalently, the N functions are linearly dependent if
any of them can be written as a linear combination of
the others.

1.1 Complementary functions

Recall that eλx is an eigenfunction of d/dx, i.e.,

d

dx
eλx = λeλx .

It follows that eλx is also an eigenfunction of d2/dx2 and,
indeed, of any linear differential operator with constant
coefficients. Taking

D = a
d2

dx2
+ b

d

dx
+ c ,

we have
D
(
eλx
)

=
(
aλ2 + bλ+ c

)
eλx .

Complementary functions of Eq. (1) satisfy D(yc) = 0
and so are eigenfunctions with eigenvalue zero. It follows
that

yc = Aeλx

range we are interested in
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is a complementary function provided that the charac-
teristic equation is satisfied.

Definition (Characteristic equation). The characteris-
tic equation of the (second-order) differential equation
ay′′ + by′ + cy = 0 is

aλ2 + bλ+ c = 0 .

Since the characteristic equation of a second-order dif-
ferential equation is quadratic, there are two solutions,
λ1, λ2, leading to two complementary functions

yc1 ∝ eλ1x and yc2 ∝ eλ2x .

If λ1 6= λ2, then yc1 and yc2 are linearly independent.
Furthermore, any other solution of the homogenous dif-
ferential equation D(y) = 0 can then be written as a
linear combination of yc1 and yc2, i.e.,

y(x) = c1yc1(x) + c2yc2(x) .

This is the most general complementary function for
Eq. (1), with yc1 and yc2 forming a basis for the space of
solutions of the homogeneous equation.

You should be aware that the roots of the characteristic
equation may be complex, in which case the complemen-
tary functions have oscillatory character. Moreover, the
roots may be degenerate, λ1 = λ2. In this case, we only
have one linearly independent complementary function
of the form eλ1x. We shall explore how to deal with this
case in an example below.

Example (Non-degenerate, real roots of the character-
istic equation). Consider the equation

d2y

dx2
− 5

dy

dx
+ 6y = 0 .

The characteristic equation is

λ2 − 5λ+ 6 = 0 ⇒ (λ− 2)(λ− 3) = 0 ,
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which is solved by λ = 2 or 3. It follows that the general
complementary function is

yc(x) = Ae2x +Be3x ,

for arbitrary constants A and B.

Example (Complex roots). Consider the equation

d2y

dx2
+ 4y = 0 .

The characteristic equation is

λ2 + 4 = 0 ⇒ λ = ±2i .

The roots are non-degenerate but complex. The general
complementary function is

yc(x) = Ae2ix +Be−2ix ,

for arbitrary (complex) constants A and B. We can
express this in terms of sine and cosine to emphasise the
oscillatory character:

yc = A(cos 2x+ i sin 2x) +B(cos 2x− i sin 2x)

= α cos 2x+ β sin 2x ,

where α = A + B and β = i(A − B) are two further
arbitrary constants.

Example (Degeneracy and detuning). Consider the
equation

d2y

dx2
− 4

dy

dx
+ 4y = 0 . (2)

The characteristic equation is

λ2 − 4λ+ 4 = 0 ⇒ (λ− 2)2 = 0 .

The roots are now degenerate, λ = 2, and we only gen-
erate one linearly independent solution yc ∝ e2x. This
does not form a basis for the solution space of Eq. (2)
since the the solution space of any second-order differ-
ential equation is two-dimensional.
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We can construct a second, linearly independent solu-
tion using a technique known as detuning. The idea is
to modify Eq. (2) slightly to remove the degeneracy. In
particular, consider the “detuned” equation

d2y

dx2
− 4

dy

dx
+
(
4− ε2

)
y = 0 . (3)

In the limit ε→ 0, this reduces to Eq. (2), the equation
that we really want to solve. The characteristic equation
for Eq. (3) is

λ2 − 4λ+ 4− ε2 = 0 ,

which has roots λ = 2 ± ε. The general solution of the
detuned equation (3) is then

y = Ae(2+ε)x +Be(2−ε)x

= e2x
(
Aeεx +Be−εx

)
.

To take the limit as ε → 0, we use the series expansion
of the exponential function to obtain

y = e2x
[
(A+B) + ε(A−B)x+O(Aε2) +O(Bε2)

]
.

Suppose now that we choose to solve Eq. (2) with the
initial conditions y(0) = C and y′(0) = D. Adopting
the same initial conditions for the detuned equation, we
have

C = A+B and D = 2(A+B) + ε(A−B) .

It follows that

A+B = C and ε(A−B) = D − 2C .

Moreover, terms of O(Aε2), for example, become O(ε)
since

A =
1

2

(
C +

D − 2C

ε

)
.

Taking the limit as ε→ 0, we have

y → e2x [C + (D − 2C)x] .
This term dominates
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It follows that the general solution of Eq. (2) is

yc = e2x (α + βx) ,

for arbitrary constants α and β.

We see that we have constructed a second, linearly in-
dependent complementary function of the degenerate
equation (2) of the form xe2x. This is reminiscent of the
solutions we found in the radioactivity example back in
Topic II.

This example illustrates a general rule. For linear equa-
tions with constant coefficients where the characteristic
equation has a repeated root, if yc1(x) is a degenerate
complementary function, then yc2(x) = xyc1(x) is a lin-
early independent complementary function.

2 Homogeneous second-order equations with non-
constant coefficients

Having seen how to solve homogeneous second-order
equations with constant coefficients, let us consider the
more general case of equations with non-constant coef-
ficients. In this section, we shall discuss ways to find
a second, linearly independent complementary function
assuming that we have been able to find a first solution.
We shall also look at some general properties of these
solutions.

We shall consider equations of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 , (4)

for general functions p(x) and q(x).

2.1 Second complementary function: reduction of order

Suppose that we know a first complementary function
y1(x) that solves Eq. (4).
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Let us assume that the second complementary function
y2(x) = v(x)y1(x) for some as-yet-undetermined func-
tion v(x). Applying the product rule, we have

y′2 = vy′1 + v′y1 and y′′2 = vy′′1 + 2v′y′1 + v′′y1 .

Given that y2 is supposed to satisfy Eq. (4), substituting
and collecting terms we find

v′′y1 + v′ (2y′1 + py1) + v (y′′1 + py′1 + qy1) = 0 .

Since y1 also satisfies Eq. (4), the bracket multiplying
v(x) is zero and so

v′′y1 + v′ (2y′1 + py1) = 0 .

This is a first-order equation for the variable u ≡ v′:

u′y1 + u (2y′1 + py1) = 0 . (5)

Equation (5) is a separable, first-order equation and so
can be integrated to find u = v′ up to an integration
constant that appears as an overall normalisation factor,
A:

u′

u
= −2y′1

y1
− p

⇒ lnu = −2 ln y1 −
∫ x

p(u) du+ lnA

⇒ u(x) =
A

y2
1(x)

exp

(
−
∫ x

p(w) dw

)
. (6)

This equation can be further integrated to determine
v(x) up to addition of a further integration constant.
This latter constant will just lead to a y2 containing
arbitrary amounts of y1.

This technique is called reduction of order, because we
have reduced a second-order differential equation to a
first-order equation (for v′) that we can solve since it is
separable. This is actually a very general technique for
higher-order differential equations.



Pt-IA Mathematics 2021/22: Differential equations 8

Example. Consider the degenerate equation (2):

y′′ − 4y′ + 4y = 0 ,

which we know has a (degenerate) solution y1 = e2x. We
look for a second solution in the form y2(x) = v(x)y1(x),
so that

y′2 = (v′ + 2v)e2x and y′′2 = (v′′ + 4v′ + 4v) e2x .

Substituting into the differential equation, and dividing
through by e2x (which is guaranteed to be non-zero for
all x) we obtain

v′′ + 4v′ + 4v − 4(v′ + 2v) + 4v = 0 .

Unsurprisingly there is lots of cancellation, and so

v′′ = 0 ⇒ u = v′ = A ,

consistent with Eq. (6) since p(x) = −4. Finally, we in-
tegrate again to find v = Ax+B for arbitrary constants
A and B. It follows that

y2(x) = (Ax+B)e2x .

We see that the integration constant B just adds an
arbitrary amount of y1(x) to y2(x), and we can take the
second, linearly independent solution to be y2 ∝ xe2x in
agreement with that we found previously by detuning.

2.2 Phase space

Quite generally, an nth-order differential equation de-
termines the nth derivative, y(n)(x) in terms of y(x) and
its derivatives up to y(n−1)(x). Moreover, by differenti-
ating the equation, these same derivatives determine all
higher-order derivatives too.

If we think of specifying y(x0), y
′(x0), . . . , y

(n−1)(x0) at
some initial point x0, then we can construct all deriva-
tives there and hence the Taylor series of y(x) about x0.
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Hence, the solution of a nth-order differential equation
is uniquely determined by these initial conditions.1

We can therefore think of the state of the system gov-
erned by the differential equation as being fully specified
at any value of the independent variable by the solution
vector Y(x):

Y(x) =


y(x)
y′(x)

...

y(n−1)(x)

 . (7)

For every x, this vector (note the convention of writing
it in bold font) defines a point in a n-dimensional phase
space. As x varies Y(x) traces out a trajectory in phase
space.

Example. Consider the undamped oscillator equation

y′′ + 4y = 0 .

Two linearly independent solutions are y1 = cos 2x and
y2 = sin 2x. Therefore, the associated solution vectors
are

Y1(x) =

(
y1

y′1

)
=

(
cos 2x
−2 sin 2x

)
,

Y2(x) =

(
y2

y′2

)
=

(
sin 2x

2 cos 2x

)
.

The two solution vectors thus trace out an elliptical tra-
jectory in phase space as x varies, as shown in the figure
to the right.

Note how in this example the two solution vectors are
linearly independent (i.e., non-colinear in 2D) for all x.
(We shall see shortly how this idea generalises.) There-
fore, any point in phase space can be reached by a linear
combination of Y1 and Y2 at any x and the solution vec-
tors form a basis for the 2D phase space.

1It takes rather more work to prove this statement rigorously!
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Generally, for an nth-order linear equation, it is often
convenient to use the solution vectors constructed from
n linearly independent complementary functions as basis
vectors for the phase space.

2.3 Wronskian and linear independence

Recall that n functions, yi(x) (i = 1, . . . , n), are linearly
dependent if

n∑
i=1

ciyi(x) = 0

for some n constants ci not all of which are zero. Since
this has to hold for all x (within some domain of inter-
est), we can differentiate n − 1 times and collect the n
constraints as

n∑
i=1

ciYi(x) = 0 , (8)

where the Yi(x) are the n vectors constructed from the
yi and their derivatives. This vector equation is the
statement that the n vectors Yi(x) are linearly depen-
dent for all x.

Equation (8) implies that the determinant of the fun-
damental matrix, constructed with the ith column be-
ing Yi(x), vanishes if the functions yi(x) (i = 1, . . . , n)
are linearly dependent.2 We call this determinant the
Wronskian.

Definition (Wronskian). The Wronskian W (x) of n
functions yi(x) (i = 1, . . . , n) is the determinant of the
fundamental matrix whose columns are the vectors Yi:

W (x) ≡

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... . . . ...

y
(n)
1 y

(n)
2 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣ .
2If the vectors are linearly dependent, some column of the fundamental matrix is

a linear combination of other columns and so the determinant vanishes.
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We have seen that

linear dependence of the yi(x) ⇒ W (x) = 0 .

It follows that3

W (x) 6= 0 ⇒ the yi(x) are linearly independent.

This is very useful in the context of solutions of nth-
order linear differential equations as we can test for lin-
ear independence by calculating the Wronskian of n pu-
tative solutions.

For a second-order differential equation, as considered
here, the Wronskian W (x) takes the particularly simple
form

W (x) =

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1. (9)

Example. For the equation y′′ + 4y = 0, we have y1 =
cos 2x and y2 = sin 2x. Therefore

W (x) =

∣∣∣∣ cos 2x sin 2x
−2 sin 2x 2 cos 2x

∣∣∣∣ = 2(cos2 2x+sin2 2x) = 2 ,

so these solutions are linearly independent (as expected).

Example. For the equation y′′ − 4y′ + 4y = 0, we have
y1 = e2x and the independent solution y2 = xe2x. In this
case,

W (x) =

∣∣∣∣ e2x xe2x

e2x (1 + 2x)e2x

∣∣∣∣ = e4x(1 + 2x− 2x) = e4x ,

establishing linear independence again as e4x is never
zero.

3Note that W = 0 does not necessarily imply linear dependence. For example, in
two dimensions sufficient conditions for linear dependence are that W = 0 and that
one of the functions, say y1, is non-zero over the domain of interest. In this case, we
can write the Wronskian in the form

W (x) = −y2
1
d

dx

(
y2
y1

)
and then W = 0 implies y2 ∝ y1.
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2.4 Abel’s theorem

In these examples, the Wronskian is non-zero for all x.
Is it possible that it is zero for some x while non-zero
for others? The answer is no, as a consequence of Abel’s
theorem.

Theorem (Abel’s theorem). Given a linear, second-
order, homogenous differential equation,

y′′ + p(x)y′ + q(x) = 0 , (10)

where p(x) and q(x) are continuous on an interval I,
then, for any solutions of the differential equation, either
W = 0 for all x ∈ I or W 6= 0 for all x ∈ I.

Proof (sketch). From Eq. (9), the derivative of the
Wronskian of two solutions of Eq. (10) is

W ′ = y1y
′′
2 − y2y

′′
1 .

Since y1 and y2 satisfy the differential equation (10), we
have

W ′ = y2 (py′1 + qy1)− y1 (py′2 + qy2)

= −p (y1y
′
2 − y2y

′
1)

= −pW .

This is a separable, first-order equation for the Wron-
skian with solution (Abel’s identity)

W (x) = W (x0) exp

(
−
∫ x

x0

p(u) du

)
, (11)

for some arbitrary x0. Since the exponential is never
zero, either W (x0) = 0, in which case W = 0 for all x,
or W (x0) 6= 0, in which case W 6= 0 for any x.

As a corollary of Abel’s identity, note that if p(x) = 0,
i.e., the differential equation has no y′ term, the Wron-
skian is constant.

Example (Bessel’s equation). Consider

x2y′′ + xy′ +
(
x2 − n2

)
y = 0 .



Pt-IA Mathematics 2021/22: Differential equations 13

This equation has no closed-form solutions for most val-
ues of n ((half-integer values are an exception). Dividing
through by x2, we have

d2y

dx2
+

1

x

dy

dx
+

(
1− n2

x2

)
y = 0 ,

so that p(x) = 1/x. Abel’s identity (11) gives

W (x) = W (x0) exp

(
−
∫ x

x0

du

u

)
⇒ W (x) = W (x0)

x0

x
.

Note how Abel’s identity determines the form of the
Wronskian without having to solve the differential equa-
tion directly.

2.4.1 Application of Abel’s theorem

Abel’s identity (11) can be written as

y1y
′
2 − y2y

′
1 = W (x0) exp

(
−
∫ x

x0

p(u) du

)
.

If y1 is known, we can think of this is a first-order equa-
tion for y2, which we can write as

d

dx

(
y2

y1

)
=
W (x0)

y2
1(x)

exp

(
−
∫ x

x0

p(u) du

)
. (12)

Integrating both sides, we obtain y2(x) up to the addi-
tion of a constant multiple of y1(x) (which arises from
the integration constant). The y2(x) that we obtain is
ensured to have the correct Wronskian with y1(x), and
in particular the value W (x0) at x = x0. (Note that
adding any multiple of y1(x) to y2(x) does not change
the Wronskian.)

This method of finding a second solution to a homoge-
neous equation is equivalent to the method of reduction
of order (Sec. 2.1). Indeed, Eq. (12) is exactly Eq. (6)
on recalling that y2 = v(x)y1 and u = v′ there.

Geometric Interpretation

Solution vectors always colinear or never 
colinear as x varies

Phase space
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2.4.2 Generalisation

Abel’s theorem generalises to the Wronskian of solutions
of higher-order, linear, homogeneous equations (see Ques-
tion 7 on Examples Sheet 3).

As we discuss further in Topic V, any nth-order, lin-
ear, homogeneous differential equation for y(x) can be
written in the form

Y′ + A(x)Y = 0 ,

where A(x) is an n × n matrix, which may depend on
x, and Y is the n-dimensional vector formed from y(x)
and its first n− 1 derivatives (see Eq. 7). For example,
for the equation

y′′′ + p(x)y′′ + q(x)y′ + r(x)y = 0 ,

we have

Y′ +

 0 −1 0
0 0 −1

r(x) q(x) p(x)

Y = 0 .

It can be shown that the Wronskian W of n solutions of
the original nth-order differential equation satisfies

W ′ + Tr[A(x)]W = 0 ,

where Tr denotes the trace. This equation is solved by

W = W (x0) exp

(
−
∫ x

x0

Tr[A(u)] du

)
,

and so Abel’s theorem still holds.

2.5 Linear equidimensional equations

Definition (Equidimensional equation). A linear, second-
order equation is equidimensional if it has the form

ax2d
2y

dx2
+ bx

dy

dx
+ cy = f(x) , (13)

(qn7, sheet 3)
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where a, b and c are constants.

Such equations are called “equidimensional” (or some-
times “homogeneous”, although this is confusing as we
are using the latter term for equations with no forc-
ing term, i.e., f(x) = 0) since solutions of the unforced
equation remain solutions under scaling of x. Specifi-
cally, let y(x) be a solution of Eq. (13) when f(x) = 0.
Now consider the new function φ(x) = y(αx), where α
is an arbitrary scaling parameter. Since, by the chain
rule,

x
dφ

dx
= (αx)y′(αx) ,

we see that

ax2d
2φ

dx2
+ bx

dφ

dX
+ cφ = 0 ,

so φ(x) satisfies the same equation as y(x).

Equivalently, if Eq. (13) describes some physical system,
so that the variables have dimensions, the dimensions of
each term on the left-hand side are the same (assuming
that the constants a, b and c to be dimensionless). For
example, in a dynamical system y might have dimen-
sions of length (L) and x dimensions of time (T ). Then
y′ has dimensions LT−1 and y′′ has dimensions LT−2, so
that y, xy and xy′′ all have dimensions L.

Let us now determine the complementary functions of
Eq. (13).

2.5.1 Solving by eigenfunctions

Noting that y = xk is an eigenfunction of xd/dx (with
eigenvalue k), we can look for complementary functions
of this form. Substituting into

ax2d
2y

dx2
+ bx

dy

dx
+ cy = 0 ,

we require

ak(k − 1) + bk + c = ak2 + (b− a)k + c = 0 . (14)
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This equation has two roots k1 and k2, and so, provided
they are distinct, the general complementary function is

yc = Axk1 +Bxk2 .

2.5.2 Solving by substitution

An alternative method for determing the complemen-
tary functions of equidimensional equations is to make
the substitution z ≡ lnx. This is useful since it turns
Eq. (13) into an equation with constant coefficients.

To see this, note that for y(ez),

dy

dz
= ezy′(ez) ,

d2y

dz2
= ezy′(ez) + e2zy′′(ez) ,

so that if y(x) is a solution of Eq. (13), then y(ez)
satisifes

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = f(ez) . (15)

We can now use the techniques for equations with con-
stant coefficients (Sec. 1) to solve Eq. (15). For example,
we can look for complementary functions of the form
y = eλz, in which case we require

aλ2 + (b− a)λ+ c = 0 .

This is the same characteristic equation as Eq. (14), so
the roots are k1 and k2. The general complementary
function is then

yc = Aek1z +Bek2z = Axk1 +Bxk2 ,

as expected.

In the degenerate case, the roots of the characteristic
equation are equal: λ = k1 = k2 = k. However, we know
from our earlier example of “detuning” how to deal with
such cases for equations with constant coefficients. The
general complementary function is then

yc = Aekz +Bzekz = Axk +Bxk lnx .
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f(x) yp(x)

emx Aemx

sin kx or cos kx A sin kx+B cos kx
Polynomial pn(x) qn(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0

Table 1: Form of particular integrals yp(x) for linear, second-order equa-
tions with constant coefficients with some common forcing terms f(x) .

3 Inhomogeneous (forced) second-order differ-
ential equations

So far, we have focused on finding complementary func-
tions. Let us now consider determining particular in-
tegrals of inhomogeneous equations, beginning with the
case of equations with constant coefficients.

3.1 Particular integrals of equations with constant coef-
ficients

We consider linear, second-order equations with con-
stant coefficients, i.e.,

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) .

For particularly simple forms of the forcing function
f(x) we can write down a particular integral yp(x) by
inspection/guesswork. Table 1 lists some common cases.

The various arbitrary constants in the particular inte-
grals are determined by substitution in the underlying
differential equation. It is important to remember that
this equation is linear, so we can superpose solutions
and consider each forcing term separately.

Example. Consider the equation

y′′ − 5y′ + 6y = 2x+ e4x .

For the forcing term 2x we consider a particular integral
ax + b, and for e4x we consider ce4x. Superposing, we
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try
yp = ax+ b+ ce4x ,

so that
y′p = a+ 4ce4x , y′′p = 16ce4x .

Substituting these into the differential equation, and col-
lecting terms multiplying the same function of x, we ob-
tain

(16c− 20c+ 6c)︸ ︷︷ ︸
→1

e4x + (6a)︸︷︷︸
→2

x+ (−5a+ 6b)︸ ︷︷ ︸
→0

= 2x+ e4x .

Comparing coefficients, we find that c = 1/2, a = 1/3
and b = 5/18. Noting that the homogeneous equation
is solved by e2x and e3x, we have the general solution

y = Ae3x +Be2x +
1

2
e4x +

1

3
x+

5

18
.

Note that the boundary conditions used to determine
the constant A and B must be applied to the entire
solution, not just the complementary function.

3.1.1 Resonance

In the example above, the forcing term e4x is not a com-
plementary function of the differential equation. How-
ever, if the forcing term were e2x, say, we would not have
been able to construct a particular integral of the form
yp(x) ∝ e2x. We can deal with such cases by “detuning”
the forcing term.

The process is best illustrated with a concrete example.
Consider the forced equation

ÿ + ω2
0y = sinω0t . (16)

The complementary function is

yc(t) = A sinω0t+B cosω0t ,

where A and B are constants. Physically, this is an
example of a simple harmonic oscillator, with natural
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frequency ω0, being driven by a oscillatory force that is
at the natural frequency. In such situations, the system
is said to be driven resonantly. Since the forcing term is
a complementary function at resonance, a linear combi-
nation of sinω0t and cosω0t is not a particular integral.

Instead, we proceed by “detuning” the forcing term away
from the natural frequency by considering

ÿ + ω2
0y = sinωt (ω 6= ω0) .

We try a particular integral

yp(t) = sinωt ,

where C is a constant to be determined. The form of
the left-hand side of Eq. (3.1.1) means there is no cosωt
term in yp. Substituting into the differential equation
we find

ÿp + ω2
0yp = C

(
−ω2 + ω2

0

)
sinωt ⇒ C =

1

ω2
0 − ω2

.

Now we recall that, ultimately, we are interested in the
limit ω → ω0. The particular integral we have found
does not have a finite limit as C → ∞ there. However,
we can try and fix this by adding in any solution of
the homogeneous equation as this will still be a valid
particular integral. If we take

yp(t) =
1

ω2
0 − ω2

(sinωt− sinω0t) , (17)

evaluating the (now-indeterminate) limit with l’Hôpital’s
rule, we have

lim
ω→ω0

yp(t) = − t

2ω0
cosω0t . (18)

This is a valid particular integral of Eq. (16).

As a general rule, if the forcing term is a linear combi-
nation of complementary functions, then the particular
integral is proportional to the independent variable (t

C.F.



Pt-IA Mathematics 2021/22: Differential equations 20

in the example above) times a non-resonant particular
integral (cosω0t above).

Aside: Behaviour close to resonance

It is interesting to consider the particular integral in Eq. (17) in the case
that the driving frequency ω is close to, but not equal to, the natural
frequency ω0.

In this case, it is convenient to factorise yp(t) using

sinωt− sinω0t = Im
(
eiωt − eiω0t

)
= Im

[
ei(ω+ω0)t/2

(
ei(ω−ω0)t/2 − e−i(ω−ω0)t/2

)]
= 2 cos

[(
ω + ω0

2

)
t

]
sin

[(
ω − ω0

2

)
t

]
.

This factors out an oscillation at the average frequency, (ω+ω0)/2, and
a slow oscillation at (half) the difference of the frequencies, (ω − ω0)/2.
If we write ω0 − ω = ∆ω, we have

yp(t) =
−2

(2ω + ∆ω)∆ω
cos

[(
ω +

∆ω

2

)
t

]
sin

(
∆ω

2
t

)
. (19)

For ∆ω � ω, the slow oscillation at frequency ∆ω/2 is much less rapid
than that at the average frequency. In this limit, we observe the phe-
nomenon of beating : the slow oscillation acts as a long-period modula-
tion of the amplitude of the rapid oscillation. An example is shown in
the figure to the right.

As ∆ω → 0, the period of the modulation tends to infinity and we
have linear growth of the amplitude of the oscillation at ω = ω0. It is
straightforward to show that in this limit, Eq. (19) reduces to our earlier
result (18).

3.1.2 Resonance in equidimensional equations

The discussion above of resonance in equations with con-
stant coefficients carries over to the case of equidimen-
sional equations (Sec. 2.5). Recall that such equations
have complementary functions of the yc ∝ xk1 or xk2 (in

(just the guess from table 1)
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the non-degenerate case). In the case that the forcing
term is proportional to xk1 (or xk2), there is a particular
integral of the form xk1 lnx.

This result follows from transforming the equidimen-
sional equation to one with constant coefficients by the
substitution z = ln x. For the transformed equation, a
forcing term proportional to ek1z (or ek2z) gives rise to a
complementary function of the form zek1z or, expressed
in terms of x, yp(x) ∝ xk1 lnx.

3.2 Variation of parameters

So far, we have been determining particular integrals by
making an educated guess. The method of variation of
parameters provides a systematic way to find a partic-
ular integral given linearly independent complementary
functions y1(x) and y2(x).

Consider the forced (inhomogeneous) second-order dif-
ferential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = f(x) , (20)

with linearly independent complementary functions y1

and y2.

Recall that for any solution, y(x), of Eq. (20), we define
the solution vector

Y(x) =

(
y(x)
y′(x)

)
. (21)

It will prove convenient to use the vectors

Y1(x) =

(
y1(x)
y′1(x)

)
and Y2(x) =

(
y2(x)
y′2(x)

)
as a basis for the solution space, so that at any x we
write a particular integral as

Yp(x) = u(x)Y1(x) + v(x)Y2(x) , (22)
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where u(x) and v(x) are functions to be determined.

Note that linear independence of the functions y1 and y2

ensures that the vectors Y1 and Y2(x) are also linearly
independent for all x.

The components of Eq. (22) give

yp = uy1 + vy2 , (23)

y′p = uy′1 + vy′2 . (24)

Differentiating the second equation, we have

y′′p = uy′′1 + u′y′1 + vy′′2 + v′y′2 . (25)

Adding this to p(x) times Eq. (24) and q(x) times Eq. (23),
and demanding that yp satisfies the differential equa-
tion (20), we have

u′y′1 + v′y′2 = f , (26)

where we have used that y1 and y2 are complementary
functions.

Now note that we derived Eq. (24) from the second row
of the vector equation (22). However, this expression for
y′p has to be consistent with what we get by differenti-
ating yp in Eq. (23) directly. This requires that

u′y1 + v′y2 = 0 .

Along with Eq. (26), this gives us two simultaneous
equations for u′ and v′, which we should be able to solve.

Writing these simultaneous equations in matrix form,
we have (

y1 y2

y′1 y′2

)(
u′

v′

)
=

(
0
f

)
.

Inverting the matrix on the left, we have(
u′

v′

)
=

1

W

(
y′2 −y2

−y′1 y1

)(
0
f

)
,

where W (x) is the (non-zero) Wronskian of y1 and y2.
It follows that

u′ = − y2

W
f and v′ =

y1

W
f . (27)
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Integrating these, and then substituting in Eq. (23), we
obtain a particular integral

yp(x) = y2(x)

∫ x y1(ξ)f(ξ)

W (ξ)
dξ − y1(x)

∫ x y2(ξ)f(ξ)

W (ξ)
dξ .

Note that we have not specified the lower limits on the
integrals here. Changing these just adds constant mul-
tiples of y1 and y2 (i.e., a complementary function) to
the particular integral.

Example. Consider the differential equation

y′′ + 4y = sin 2x .

Since the complementary functions are

y1 = sin 2x and y2 = cos 2x ,

this is an example of an oscillator being driven reso-
nantly (the forcing term is a complementary function).
The Wronskian of y1 and y2 is W = −2, and so Eq. (27)
gives

u′ =
1

2
cos 2x sin 2x =

1

4
sin 4x ,

v′ = −1

2
sin2 2x =

1

4
(cos 4x− 1) .

Integrating gives

u = − 1

16
cos 4x and v =

1

16
sin 4x− x

4
.

It follows that

yp =
1

16
(− cos 4x sin 2x+ sin 4x cos 2x)− 1

4
x cos 2x ,

=
1

16
sin 2x

(
− cos 4x+ 2 cos2 2x

)
− 1

4
x cos 2x ,

=
1

16
sin 2x− 1

4
x cos 2x .

The first term is clearly a multiple of one of the com-
plementary functions. The second term is of the form
x times a complementary function, as expected from
our earlier discussion of resonance. Indeed, identifying
ω0 = 2 and t with x in Eq. (16), we see that the term
−(x cos 2x)/4 above is exactly the same as the particular
integral (18) that we found using detuning.
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4 Forced oscillating systems: transients and damp-
ing

In this section we consider linear systems where there is
a restoring force that tends to make the system oscillate
and some damping force (e.g., friction in a mechanical
system) that tends to oppose motion. There may also
be some driving force.

Consider the set-up in the figure to the right, which
might describe a car suspension system, for example.
A mass m is acted on by a linear restoring force −ky,
where k is a (positive) spring constant and y(t) is the
vertical displacement of the mass from its equilibrium
position. There is also a damping force −bẏ, where b is
a positive damping constant, that resists the motion. In
addition, the system is driven by an external force F (t).

The equation of motion for the displacement of the mass
is given by Newton’s second law: mÿ = total force. We
have

mÿ = −ky − bẏ + F (t)

⇒ mÿ + bẏ + ky = F (t) . (28)

In the absence of damping and the external driving force,
the system undergoes simple-harmonic motion with an-
gular frequency ω0 ≡

√
k/m. It is convenient to intro-

duce a dimensionless time coordinate τ ≡ ω0t. Dividing
Eq. (28) through by mω2

0 (i.e., k), we can put the equa-
tion in dimensionless form:

y′′ + 2κy′ + y = f(τ) , (29)

where

y′ ≡ dy

dτ
, κ =

b

mω0
f ≡ F

k
.

In the form of Eq. (29), the unforced system is described
by a single dimensionless parameter κ.

tau is the period of oscillation up to 
a factor of 2pi.
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4.1 Free (unforced or natural) response

With f = 0, Eq. (29) reduces to

y′′ + 2κy′ + y = 0 . (30)

We look for solutions of the form y ∝ eλτ , which gives
the characteristic equation

λ2 + 2κλ+ 1 = 0 .

There are (generally) two roots given by

λ1 , λ2 = −κ±
√
κ2 − 1 .

There are three cases to consider: κ < 1, κ = 1 and
κ > 1.

4.1.1 Light damping (underdamping): κ < 1

If κ < 1, both roots λ1 and λ2 are complex. We can
write them as

λ1 , λ2 = −κ± i
√

1− κ2 .

The general solution of Eq. (30) is then

y(τ) = e−κτ
[
A sin

(√
1− κ2τ

)
+B cos

(√
1− κ2τ

)]
,

where A and B are constants. This solution describes
damped oscillations at angular frequency

ωfree =
√

1− κ2ω0 , (31)

which is lowered by damping from ω0. The amplitude
of the oscillation decays in time with a characteristic
(dimensionless) decay time of 1/κ. This behaviour is
illustrated in the figure to the right.
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4.1.2 Critical damping: κ = 1

For κ = 1, the characteristic equation is degenerate with
a repeated root

λ1 = λ2 = −κ .
The general solution of Eq. (30) is then

y(τ) = e−κτ (A+Bτ) ,

where A and B are constants. An example behaviour is
shown in the figure to the right.

4.1.3 Heavy damping (overdamping): κ > 1

If κ > 1, both roots of the characteristic equation are
real and negative. If we take |λ1| < |λ2|, then

λ1 = −κ+
√
κ2 − 1 and λ2 = −κ−

√
κ2 − 1 ,

and the general solution of Eq. (30) is

y(τ) = Ae−|λ1|τ +Be−|λ2|τ ,

where A and B are constants.

The solution initially varies on the more rapid timescale
1/|λ2|, but once this has decayed the solution approaches
y(τ) = Ae−|λ1|τ , which has decay time 1/|λ1|. The typi-
cal behaviour is shown in the figure to the right.

Note that in all cases, the unforced response decays
eventually.

4.2 Forced response

In a forced system described by Eq. (29), the comple-
mentary function (i.e., unforced response) decays in time.
The long-term behaviour is therefore determined by the
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driving force (through the particular integral), while the
initial transient response is determined by both the com-
plementary function and particular integral.

Example. Consider sinusoidal forcing so that Eq. (28)
can be written as

ÿ + µẏ + ω2
0y =

F0

m
sinωt , (32)

where µ ≡ b/m. We shall assume light damping, µ <
2ω0, in which case the complementary function is

yc(t) = e−µt/2 (A sinωfreet+B cosωfreet) ,

where ωfree =
√
ω2

0 − µ2/4.

For the particular integral, we try

yp(t) =
F0

m
(C sinωt+D cosωt) .

Substituting in Eq. (32) and comparing coefficients of
the sinωt and cosωt terms, we have

−ω2C − µωD + ω2
0C = 1

−ω2D + µωC + ω2
0D = 0 .

These are solved by

C =
ω2

0 − ω2

(ω2
0 − ω2)

2
+ (µω)2

D =
−µω

(ω2
0 − ω2)

2
+ (µω)2

The full solution is y(t) = yc(t) + yp(t), with

yp(t) =
F0/m

(ω2
0 − ω2)

2
+ (µω)2

×
[(
ω2

0 − ω2
)

sinωt− µω cosωt
]
.

The solution is shown to the right. Note that the com-
plementary function decays leaving only the particular
integral asymptotically. This means that the damped
oscillator has no long-term memory of its initial condi-
tions since these only affect the constants A and B in
the complementary function.
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The particular integral determines the steady-state re-
sponse to the driving force. This is sinusoidal with am-
plitude given by (F0/m)

√
C2 +D2:

Amplitude of yp =
F0/m√

(ω2
0 − ω2)

2
+ (µω)2

.

For light damping, the amplitude is sharply peaked at
the amplitude resonant frequency

ωres =
√
ω2

0 − µ2/2 ,

as illustrated in the figure to the right. The amplitude
at ωres increases as the damping is reduced and the peak
becomes sharper.

5 Impulses and point forces

Consider a system that experiences a sudden force, ex-
tending from time t = T − ε to t = T + ε, where ε
is small compared to any other natural timescale (e.g.,
oscillation period or decay time) in the system. For ex-
ample, the damped oscillator discussed in Sec. 4 might
be struck from being at rest at its equilibrium position
at time T (see figure to the right).

For small enough ε, the subsequent behaviour of the
system does not depend on ε or the detailed form of the
force when non-zero – all that matters is the impulse of
the force,

I ≡
∫ T+ε

T−ε
F (t) dt .

Mathematically, it is then convenient to consider the
limit of a sudden, impulsive force with ε → 0, while
preserving the impulse. (This means that the magnitude
of the force at its peak must grow without limit.)
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If we consider the damped, driven oscillator of Sec. 4,
described by

mÿ + bẏ + ky = F (t) ,

we can integrate the equation of motion from T − ε to
T + ε to find

lim
ε→0

(
m [ẏ]T+ε

T−ε + b [y]T+ε
T−ε + k

∫ T+ε

T−ε
y dt

)
= I .

The second term on the left is zero if y is continuous
and the third is zero if y is finite in the interval. If we
assume these to be true (they certainly will be in any
physical system), we see that the velocity ẏ undergoes a
sudden change (it is discontinuous) that depends on the
impulse of the force:

lim
ε→0

(
m [ẏ]T+ε

T−ε

)
= I .

A typical behaviour is shown in the figure to the right.

5.1 The Dirac delta function

We can formalise the idea of an impulsive force by in-
troducing the Dirac delta function.

We consider a family of functions D(t; ε) that have two
key properties:

1. limε→0D(t; ε) = 0 ∀ t 6= 0 ;

2.
∫∞
−∞D(t; ε) dt = 1 .

The sudden force in the example above can then be rep-
resented by F (t) = ID(t− T ; ε).

Multiply by I, to get correct impulse, and shift by T



Pt-IA Mathematics 2021/22: Differential equations 30

An example of such a family is

D(t; ε) =
1

ε
√
π
e−t

2/ε2 ,

which is illustrated in the figure to the right. (These
functions do integrate to unity; see Question 14 on Ex-
amples Sheet 1.) Note that as ε decreases, the stan-
dard deviation or “width” of the Gaussian gets narrower
while the peak value gets larger, preserving the integral.
Therefore, limε→0D(0; ε) does not exist.

Of course, the family of D(t; ε) having these two defining
characteristics is not unique. However, for any such fam-
ily the limit as ε → 0 yields a function (more carefully,
a distribution), which we call the Dirac delta function.

Definition (Dirac delta function). The Dirac delta func-
tion is defined by

δ(x) ≡ lim
ε→0

D(x; ε) ,

on the understanding that we can only use its integral
properties, i.e., when the delta function is multiplied
by some suitably well-behaved “test function” and inte-
grated over an appropriate interval (see below).

The delta function satisfies three key properties:

1. δ(x) = 0 ∀ x 6= 0 ;

2.
∫∞
−∞ δ(x) dx = 1;

3. for all functions g(x) that are continuous at x = 0,∫ ∞
−∞

g(x)δ(x) dx = lim
ε→0

∫ ∞
−∞

g(x)D(x; ε) dx = g(0) .

This last property is known as the sampling property.
For any test function continuous at x = 0, the delta
function samples its value there. The generalisation to
functions g(x) that are continuous at x = x0 is (for
b > a)∫ b

a

g(x)δ(x− x0) dx =

{
g(x0) if a < x0 < b

0 otherwise .
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5.2 Delta-function forcing

The delta function is a mathematically convenient way
of expressing impulsive forcing terms.

Consider
y′′ + p(x)y′ + q(x)y = δ(x) , (33)

where p(x) and q(x) are continuous functions. For x < 0
and x > 0, y(x) satisfies

y′′ + p(x)y′ + q(x)y = 0 .

However, at x = 0 there will be a discontinuity in y′(x).

We can see this by integrating Eq. (33) around a small
interval −ε < x < ε and taking the limit as ε→ 0:

lim
ε→0

[y′]
ε
−ε + p(0) lim

ε→0
[y]ε−ε + lim

ε→0

∫ ε

−ε
qy dx = 1 .

If we assume that y is continuous at x = 0, the sec-
ond and third term on the left vanish leaving the jump
condition

lim
ε→0

[y′]
ε
−ε = 1 .

Our assumption that y(x) has to be continuous at x = 0
can be established by contradiction. If it were discontin-
uous there, then the first derivative would be like a delta
function and the second derivative even worse behaved
making it impossible to satisfy the original differential
equation.

Generally, discontinuities arising from delta-function forc-
ing are addressed by the highest-order derivative appear-
ing in the differential equation.

Example. Consider the boundary-value problem

y′′ − y = 3δ
(
x− π

2

)
with y = 0 at x = 0 and π .

We solve this by considering the regions 0 ≤ x < π/2
and π/2 < x ≤ π separately, and then join these to-
gether using the appropriate jump condition.
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Away from x = π/2, we have

y′′ − y = 0 , (34)

with general solution y = A sinhx+B coshx. (It is more
convenient to use hyperbolic functions rather than expo-
nentials since we require y(x) to vanish at the boundary
points.) For 0 ≤ x < π/2, the relevant solution is

y(x) = A sinhx ,

while for π/2 < x ≤ π we have

y(x) = C sinh(π − x) .

We now have to join these solutions up at x = π/2 such
that y is continuous there and

lim
ε→0

[y′]
π/2+ε
π/2−ε = 3 .

Continuity of y implies that A = C, while the jump
condition on y′ gives

−C cosh(π/2)− A cosh(π/2) = 3

⇒ A = C =
−3

2 cosh(π/2)
.

The full solution is therefore

y(x) =

{
−3

2
sinhx

cosh(π/2) 0 ≤ x < π/2

−3
2

sinh(π−x)
cosh(π/2) π/2 < x ≤ π .

This is shown in the figure to the right. Note, in partic-
ular, the discontinuity in the gradient at x = π/2.

5.3 Heaviside step function H(x)

Definition (Heaviside step function). The Heaviside
step function is defined as the integral of the delta func-
tion:

H(x) =

∫ x

−∞
δ(t) dt .
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It follows that

H(x) =


0 for x < 0

1 for x > 0

undefined at x = 0 .

The Heaviside function is shown schematically in the
figure to the right. Note that it is undefined at x = 0.
From the fundamental theorem of calculus, we have that

dH

dx
= δ(x) ,

but, recall, that such functions and relationships can
only be used inside integrals.

Generally, we see the smoothing effect of integration and
the sharpening effect of differentiation: the derivative of
the Heaviside function is very rapidly varying around
the origin. On the other hand, the integral of the Heav-
iside function (sometimes called the ramp function) is
continuous at x = 0 and just has a discontinuous first
derivative.

5.3.1 Forcing with the Heaviside step function

The Heaviside step function can be used to describe sit-
uations where the forcing changes discontinuously. For
example, if a switch is closed in an electrical circuit,
the electromotive force of the battery is suddenly now
applied to the other circuit components.

Consider a system described by

y′′ + p(x)y′ + q(x)y = H(x) ,

where p(x) and q(x) are continuous at x = 0. For x < 0,
y(x) satisfies

y′′ + p(x)y′ + q(x)y = 0 ,

while for x > 0,

y′′ + p(x)y′ + q(x)y = 1 .
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The solutions of these equations are joined by noting
that

lim
ε→0

(
[y′′]

ε
−ε + p(0) [y′]

ε
−ε + q(0) [y]ε−ε

)
= 1 .

If y′′ goes like H(x) in the vicinity of x = 0, then y′ and
y are both continuous there and the above condition is
satisfied. We thus have the jump conditions:

lim
ε→0

[y′]
ε
−ε = 0 and lim

ε→0
[y]ε−ε = 0 .

6 Higher-order discrete (difference) equations

Much of what we have learnt about the solutions of lin-
ear differential equations goes over to discrete (differ-
ence) equations. Recall that we first met these in Topic
II as approximations to first-order differential equations.

Consider a discrete second-order equation of the form

ayn+2 + byn+1 + cyn = fn , (35)

where a, b and c are constants. This now couples yn+2

to both yn+1 and yn. Such couplings arise if we con-
sider discretising a second-order differential equation at
points {xn} spaced by h, since the second derivative at
xn can be approximated by

d2y

dx2

∣∣∣∣
xn

≈ yn+1 + yn−1 − 2yn
h2

.

We can solve Eq. (35) by exploiting linearity and eigen-
functions, as in the case of differential equations.

We first look for complementary functions that satisfy

ayn+2 + byn+1 + cyn = 0 . (36)

For a linear second-order differential equation with con-
stant coefficients, the complementary functions take the
form yc ∝ eλx. The discrete version of this is y

(c)
n ∝ kn

by Taylor series
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fn y
(p)
n

kn Akn if k 6= k1 or k2
kn1 Ankn1

np (p a non-negative integer) Anp +Bnp−1 + · · ·+ Cn+D

Table 2: Form of particular “integrals” y
(p)
n for discrete equations of the

type in Eq. (35). Here, k1 and k2 are the roots of the characteristic
equation for the homogeneous equation.

for some k to be determined. Trying this in Eq. (36),
we have

akn+2 + bkn+1 + ckn = 0

⇒ ak2 + bk + c = 0 .

This characteristic equation has two roots in general,
k = k1 and k = k2. The general complementary function
is then

y(c)
n =

{
Akn1 +Bkn2 if k1 6= k2 ,

(A+Bn)kn1 if k1 = k2 = k
.

The degenerate case, k1 = k2 = k, follows by analogy
with degenerate differential equations: xeλx → nkn.

We can guess particular “integrals” of Eq. (35) for simple
forcing sequences fn; see Table 2.

Example (Fibonacci sequence). The Fibonacci sequence
is defined by

yn = yn−1 + yn−2 , y0 = y1 = 1 . (37)

The sequence arises in all sorts of unexpected contexts.
For example, in biological systems it arises in the ar-
rangements of leaves on a stem or spikes on a pineap-
ple. The first few elements in the sequence for n =
0, 1, 2, 3, 4, 5 are, of course, yn = 1, 1, 2, 3, 5, 8.

We can rewrite Eq. (37) as

yn+2 − yn+1 − yn = 0 .

Trying yn = kn, we find

k2 − k − 1 = 0 ⇒ k =
1±
√

5

2
,

B absorbs h term?
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which you may recognise as the “golden ratio” or “golden
mean” and (the negative of) its inverse:

ϕ1 =
1 +
√

5

2
, ϕ2 =

1−
√

5

2
=
−1

ϕ1
.

The solution of Eq. (37) is therefore of the form

yn = Aϕn1 +Bϕn2 ,

where A and B are given by the initial conditions

y0 = 1 = A+B and y1 = 1 = Aϕ1 +Bϕ2 .

These are solved by

A =
ϕ1√

5
and B = − ϕ2√

5
,

so that

yn =
ϕn+1

1 − ϕn+1
2√

5
=
ϕn+1

1 − (−1/ϕ1)
n+1

√
5

.

This result is remarkable! It expresses a sequence of
integers in terms of the difference of powers of the irra-
tional golden ratio. Noting that ϕ1 > 1, we have

lim
n→∞

yn+1/yn = ϕ1 ,

so the ratio of adjacent terms of the Fibonacci sequence
tends to the golden ratio.

7 Series solutions

In this section, we develop techniques to find series so-
lutions to linear, homogeneous second-order differential
equations when we (perhaps) cannot find simple closed
forms. This builds on the brief discussion of series solu-
tions for first-order differential equations in Topic II.

We consider equations of the form

p(x)y′′ + q(x)y′ + r(x)y = 0 . (38)

The feasibility of constructing a series solution in the
vicinity of the point x = x0 depends on the nature of
the functions p(x), q(x) and r(x) there.
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7.1 Classification of singular points

Definition (Ordinary and singular points). The point
x = x0 is an ordinary point of the differential equa-
tion (38) if both q(x)/p(x) and r(x)/p(x) have Taylor
series around x = x0 (i.e., they are analytic there). Oth-
erwise, x = x0 is a singular point.

We can classify singular points further as follows. If
x = x0 is a singular point, but Eq. (38) can be rewritten
as

P (x)(x− x0)
2y′′ +Q(x)(x− x0)y

′ +R(x)y = 0 ,

where Q(x)/P (x) and R(x)/P (x) do have Taylor series
around x = x0, then x = x0 is a regular singular point.
Otherwise, x = x0 is an irregular singular point.

Note that this condition for a regular singular point is
equivalent to (x − x0)q(x)/p(x) and (x − x0)

2r(x)/p(x)
in Eq. (38) having Taylor series around x = x0.

Loosely, for a regular singular point, the equation is sin-
gular, but not too singular, due to the properties of the
derivative (cf. equidimensional equations).

Example. Consider

(1− x2)y′′ − 2xy′ + 2y = 0 .

We have

q(x)

p(x)
=
−2x

1− x2
and

r(x)

p(x)
=

2

1− x2
.

It follows that x = ±1 are singular points. However, as

(x− 1)
q(x)

p(x)
=

2x

x+ 1
and (x− 1)2r(x)

p(x)
=
−2(x− 1)

x+ 1
,

for example, we see that these are both regular singular
points.

Example. Consider

sinxy′′ + cosxy′ + 2y = 0 .

if regular singular point, it is no 
more singular than equidimensional 
equations, e.g. x^2 y'' + xy' + y = 0 
has a regular singular point at x = 0.

We want a Taylor series for y'', 
so we can calculate all 
derivatives given 0th and 1st.

Lets us remove singular behaviour 
by removing a pole in p(x)
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Here,
q(x)

p(x)
=

cosx

sinx
and

r(x)

p(x)
=

2

sinx
.

Clearly, x = nπ, for n an integer, are singular points
while all others are ordinary points. Writing x−nπ = ε,
we have

(x− nπ)
q(x)

p(x)
= ε

cos ε

sin ε
,

which is analytic at ε = 0. Similarly, (x−nπ)2r(x)/p(x)
is analytic at x = nπ, so the points x = nπ are all
regular singular points.

For this equation, all other points are ordinary points.

Example. Consider(
1 +
√
x
)
y′′ − 2xy′ + 2y = 0 .

We have
q(x)

p(x)
=
−2x

1 +
√
x
,

which does not have a Taylor series around x = 0 (the
second derivative is undefined). Similarly, xq(x)/p(x)
does not have a Taylor series there either so the point
x = 0 is an irregular singular point.

7.2 Method of Frobenius

We now develop the series-expansion method of obtain-
ing at least one solution of the linear, homogeneous,
second-order differential equation (38). We can always
do this provided the expansion point, x = x0 is no worse
than a regular singular point.

Theorem (Fuchs’ theorem). If x = x0 is an ordinary
point of Eq. (38), then there are two linearly indepen-
dent solutions of the form

y =
∞∑
n=0

an(x− x0)
n ,

we're interested about x near n pi.
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i.e., in the form of a Taylor series, convergent in some
neighbourhood of x0.

If, instead, x = x0 is an irregular singular point of
Eq. (38), then there is at least one solution of the form

y =
∞∑
n=0

an(x− x0)
n+σ , (39)

where σ is real and a0 6= 0 (so that σ is unique). This is
an example of a Frobenius series. It can also be written
as

y = (x− x0)
σ
∞∑
n=0

an(x− x0)
n ,

where the summation here is a Taylor series.

Note that when expanding about a regular singular point,
there is no guarantee that one will obtain two linearly
independent series solutions. We shall return to the con-
struction of a second solution in such cases later.

Attempting a series solution about an irregular singular
point may fail completely.

The method of Frobenius is best illustrated by example.
Let us first consider an example of expanding about an
ordinary point, and then a regular singular point.

Example (ordinary point). Let us consider again

(1− x2)y′′ − 2xy′ + 2y = 0 , (40)

which we saw earlier has regular singular points at x =
±1 while all other points are ordinary. Expanding about
x = 0 (an ordinary point), we try

y =
∞∑
n=0

anx
n ,

so that

y′ =
∞∑
n=1

nanx
n−1 and y′′ =

∞∑
n=2

n(n− 1)anx
n−2 .

If we approximate our differential 
equation as an equidimensional 
equation about the singular point, 
we will get this solution where 
sigma is not necessarily an integer.
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It is convenient to multiply the original equation through
by x2 to make it like an equidimensional equation but
with polynomial coefficients:

(1− x2)
(
x2y′′

)
− 2x2 (xy′) + 2x2y = 0 .

Substituting for y(x) and its derivatives, we have

∞∑
n=2

an
[
(1− x2)n(n− 1)

]
xn − 2

∞∑
n=1

an(x
2n)xn

+ 2
∞∑
n=0

an(x
2)xn = 0 .

Equating coefficients of xn, for n ≥ 2 we have

ann(n−1)−an−2(n−2)(n−3)−2an−2(n−2)+2an−2 = 0 ,

or

n(n− 1)an = n(n− 3)an−2 (n ≥ 2)

⇒ an =
n− 3

n− 1
an−2 . (41)

This is a recurrence relation determining an in terms of
an−2. Note that a0 and a1 are not fixed by this pro-
cedure – they are arbitrary constants set by the ini-
tial/boundary conditions for the differential equation.

From the recursion relation, we have a3 = 0 and so
a2k+1 = 0 for all k ≥ 1. This gives one solution, y = a1x.

On the other hand, for n even, we have

an =
(n− 3)

(n− 1)
an−2 =

(n− 3)

(n− 1)

(n− 5)

(n− 3)
an−4 = · · ·

= − 1

n− 1
a0 ,

as terms alternately cancel. Therefore

y = a0

[
1− x2 − x4

3
− x6

5
− · · ·

]
= a0

[
1− x

2
ln

(
1 + x

1− x

)]
,
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noting that

ln(1± x) = ±x− x2

2
± x3

3
− · · · .

Finally, the general solution of the differential equa-
tion (40) is

y(x) = a1x+ a0

[
1− x

2
ln

(
1 + x

1− x

)]
.

Note the logarithmic behaviour of this solution at x =
±1, which, recall, are regular singular points of the dif-
ferential equation. We shall return to this observation
when discussing the construction of a second solution
when expanding about a regular singular point.

Example (regular singular point). Consider

4xy′′ + 2(1− x2)y′ − xy = 0 .

For this equation, x = 0 is a regular singular point.
Let us look for a series solution about this point. From
Fuchs’ theorem, we try

y =
∞∑
n=0

anx
n+σ ,

with a0 6= 0. Again, it is convenient to multiply through
the differential equation (this time by x) to write it as

4
(
x2y′′

)
+ 2(1− x2) (xy′)− x2y = 0 .

Substituting for y and its derivatives, we have

∞∑
n=0

anx
n+σ [4(n+ σ)(n+ σ − 1)

+2(1− x2)(n+ σ)− x2
]

= 0 .

As before, we equate coefficients of powers of x. The
lowest power is xσ with coefficient

a0 [4σ(σ − 1) + 2σ] = 0

⇒ a0σ(2σ − 1) = 0 .
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This is called the indicial equation for the index σ. Since
a0 6= 0 by construction, we must have σ = 0 or σ = 1/2.
Generally, the lowest power of x gives rise to the indicial
equation, and its roots determine the index σ in the
Frobenius series.

The next-lowest power is xσ+1 with coefficient

a1 [4σ(σ + 1) + 2(σ + 1)] = 0

⇒ a1(σ + 1)(2σ + 1) = 0 .

For both cases σ = 0 and σ = 1/2, this implies a1 = 0.

Finally, we consider the power xn+σ for n ≥ 2. This
gives rise to the recursion relation

[4(n+ σ)(n+ σ − 1) + 2(n+ σ)] an

+ [−2(n+ σ − 2)− 1] an−2 = 0 ,

which can be rearranged to obtain

2(n+ σ)(2n+ 2σ − 1)an = (2n+ 2σ − 3)an−2 . (42)

We now consider the two roots of the indicial equation
separately.

For σ = 0, the recursion relation (42) becomes

2n(2n− 1)an = (2n− 3)an−2 (n ≥ 2) .

Since a1 = 0, it follows that a2k+1 = 0 for all k ≥ 0. For
n even, we have

an =
2n− 3

2n(2n− 1)
an−2 ,

and so

a2 =
1

4× 3
a0 , a4 =

5

8× 7
a2 =

5

8× 7
× 1

4× 3
a0 , etc.

It follows that we have one solution

y = a0

(
1 +

1

4× 3
x2 +

5× 1

8× 7× 4× 3
x4 + · · ·

)
.
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Note that this is a Taylor series.

We now consider the root σ = 1/2. In this case, the
recursion relation (42) becomes

2n(2n+ 1)an = (2n− 2)an−2 (n ≥ 2)

⇒ an =
n− 1

n(2n+ 1)
an−2 .

This gives

a2 =
1

2× 5
a0 , a4 =

3

4× 9
a2 =

3

4× 9
× 1

2× 5
a0 , etc.

It follows that we have a second solution

y = b0x
1/2

(
1 +

1

2× 5
x2 +

3× 1

4× 9× 2× 5
x4 + · · ·

)
,

where we have relabelled a0 to b0 to distinguish it from
the constant in the other solution.

We see that for this example we have generated two
linearly independent solutions with the series-expansion
method. However, this is not generally the case, as we
now discuss.

7.3 Second solutions

When expanding around a regular singular point x = x0,
we are guaranteed to be able to construct one solution
as a Frobenius series. Whether we can generate a second
depends critically on the roots, σ1 and σ2, of the indicial
equation. There are three cases to consider.

1. If σ2 − σ1 is not an integer, then there are always
two linearly independent solutions:

y = (x− x0)
σ1

∞∑
n=0

an(x− x0)
n ,

y = (x− x0)
σ2

∞∑
n=0

bn(x− x0)
n .

Note that as x→ x0, a linear combination of these
goes like a0(x− x0)

σ1 if σ1 < σ2.
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2. If σ2−σ1 is a non-zero integer, there is one solution
of the form

y1 = (x− x0)
σ2

∞∑
n=0

an(x− x0)
n ,

involving the larger root σ2 of the indicial equation.
The smaller root σ1 will generally not generate a
valid series solution (though in some special cases
it may). Instead, the second solution is of the form

y2 = (x− x0)
σ1

∞∑
n=0

bn(x− x0)
n + cy1 ln(x− x0) .

Here c is usually non-zero, i.e., the solution must
generally include a part involving the solution y1

multiplied by ln(x − x0). The constant c is not
arbitrary – it is fixed in terms of the constant a0 in
the first series and b0, leaving the general solution
with two arbitrary constants, as required.

3. If σ1 = σ2 = σ, then the log term is always required,
i.e., c 6= 0. The solutions are then

y1 = (x− x0)
σ
∞∑
n=0

an(x− x0)
n ,

y2 = (x− x0)
σ
∞∑
n=0

bn(x− x0)
n + cy1 ln(x− x0) .

Example (Case 2). Consider the differential equation

x2y′′ − xy = 0 .

The point x = 0 is a regular singular point. As usual,
we look for a solution

y =
∞∑
n=0

anx
n+σ ,

with a0 6= 0. The differential equation then requires

∞∑
n=0

[
an(n+ σ)(n+ σ − 1)xn+σ − anxn+σ+1

]
= 0 .



Pt-IA Mathematics 2021/22: Differential equations 45

The coefficient of the lowest power of x (xσ) determines
the indicial equation:

a0σ(σ − 1) = 0 ⇒ σ = 0 or σ = 1 ,

since a0 6= 0. The coefficients of the higher powers of x
give

an(n+ σ)(n+ σ − 1) = an−1 (n ≥ 1) . (43)

We see that we have two roots of the indicial equation
that differ by an integer (i.e., Case 2 above).

First consider the larger root, σ = 1. The recursion
relation (43) gives (for n ≥ 1)

an =
an−1

n(n+ 1)
⇒ an =

a0

n!(n+ 1)!
,

giving a solution

y1 = a0x

(
1 +

x

2
+
x2

12
+

x3

144
+ · · ·

)
.

Now consider the root σ = 0. The recursion relation
gives

ann(n− 1) = an−1 (n ≥ 1) .

For n = 1, the left-hand side vanishes implying that
a0 = 0. However, this is a contradiction since we have
required that a0 6= 0.

In this example, we see that the smaller root of the in-
dicial equation does not generate a series solution to the
differential equation. Instead, the solution will take the
form

y2 = cy1 lnx+
∞∑
n=0

bnx
n . (44)

Construction of the second solution (non-examinable)

There are several ways to construct the second solution. The most
direct is simply to assume the trial solution (44) and substitute it into
the differential equation.
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Proceeding this way, we have

xy2 = cy1x lnx+

∞∑
n=0

bnx
n+1 ,

x2y′′2 = c
(
y′′1x

2 lnx+ 2xy′1 − y1
)

+
∞∑
n=0

bnn(n− 1)xn ,

Recalling that y1 is a solution of the differential equation, we require

2cxy′1 − cy1 +
∞∑
n=0

bn
[
n(n− 1)xn − xn+1

]
= 0 . (45)

Note how the log terms have cancelled.

Recalling that

y1 =

∞∑
n=0

anx
n+1 with an =

a0
n!(n+ 1)!

,

so that

xy′1 =

∞∑
n=0

an(n+ 1)xn+1 ,

Eq. (45) reduces to

c
∞∑
n=0

an(2n+ 1)xn+1 +
∞∑
n=0

bn
[
n(n− 1)xn − xn+1

]
= 0 .

The coefficient of the lowest power of x (x0) vanishes identically, while
for n ≥ 1 we must have

can−1(2n− 1) + n(n− 1)bn − bn−1 = 0 . (46)

For n = 1, Eq. (46) gives
ca0 = b0 ,

which determines the constant c in terms of a0 and b0, as noted earlier.
Substituting c = b0/a0 and using the explicit form of the an, Eq. (46)
then reduces to

(2n− 1)

n!(n− 1)!
b0 − bn−1 + n(n− 1)bn = 0 (n ≥ 1) .

In this recursion relation, we can choose b0 and b1 arbitrarily and then
all bn for n > 1 are determined linearly from b0 and b1.

By assumption, b0 6= 0. If we were to take b0 = 0, then c = 0 and the log
term vanishes in the trial solution (44). Moreover, the recursion relation
would then give

bn =
b1

n!(n− 1)!
,

and the trial solution would reduce to

y2 = b1

∞∑
n=1

xn

n!(n− 1)!
= b1

∞∑
n=0

xn+1

n!(n+ 1)!
.
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This is proportional to y1 and so we have not generated a linearly inde-
pendent second solution.

We therefore need only consider the case b1 = 0, so that

b2 = −3

4
b0 , b3 = − 7

36
b0 , etc.

The second solution is then

y2 = b0 lnx
∞∑
n=0

xn+1

n!(n+ 1)!
+ b0

(
1− 3

4
x2 − 7

36
x3 + · · ·

)
, (47)

where the first summation on the right is y1/a0 and we have used c =
b0/a0.

Reduction of order

An alternative way to construct a second solution is to use the method
of reduction of order (Sec. 2.1). This has the benefit of showing why the
second solution has to have the form of the trial solution (44).

Recall that with this method, given a solution y1, we look for a second
solution in the form y2 = v(x)y1. Given the trial second solution (44),
we expect that v(x) will involve a log term. Substituting y2 = v(x)y1
into the differential equation

x2y′′2 − xy2 = 0 ,

and using the fact that y1 is also a solution, we must have

v′′y1 + 2v′y′1 = 0 .

This means that u ≡ v′ satisfies

u′y1 + 2uy′1 = 0 ⇒ u′

u
= −2

y′1
y1
.

The solution of this is

lnu = −2 ln y1 + lnB ⇒ u = v′ =
B

y21
,

where B is an arbitrary constant.

We now use the series solution for y1, which we repeat here for conve-
nience:

y1 = a0x

(
1 +

x

2
+
x2

12
+

x3

144
+ · · ·

)
.

It follows that

v′ =
B

a20x
2

(
1 +

x

2
+
x2

12
+

x3

144
+ · · ·

)−2
=

B

a20x
2

(
1− x+

7

12
x2 − 19

72
x3 + · · ·

)
,
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where we have performed a binomial expansion. Let us write this as

v′ =
B

a20

(
1

x2
− 1

x
+
∞∑
n=0

Bnx
n

)
,

where B0 = 7/12, B1 = −19/72, etc. Integrating, we find

v =
B

a20

(
−1

x
− lnx+

∞∑
n=0

Bn

n+ 1
xn+1

)
,

where we have ignored any constant of integration since it would just
add a multiple of the first solution, y1, to y2.

The final step is to multiply by y1, where, recall,

y1 = a0x
∞∑
n=0

xn

n!(n+ 1)!
.

This gives

y2 = −B
a0

lnx

∞∑
n=0

xn+1

n!(n+ 1)!
+
B

a0

(
1 +

x

2
+
x2

12
+ · · ·

)

×

(
−1 +

∞∑
n=0

Bn

n+ 1
xn+2

)

= −B
a0

lnx

∞∑
n=0

xn+1

n!(n+ 1)!
− B

a0

[
1 +

x

2
+

(
1

12
−B0

)
x2 + · · ·

]
,

which is exactly of the form of the trial second solution (44).

We can make contact with the second solution (47), derived above by
direct substitution, by identifying −B/a0 with b0 and using B0 = 7/12:

y2 = b0 lnx
∞∑
n=0

xn+1

n!(n+ 1)!
+ b0

(
1 +

x

2
− x2

2
+ · · ·

)
.

The second series on the right differs from that in Eq. (47). However,
they only differ by a series proportional to y1. If we subtract b0(x +
x2/2 + · · · )/2, we get

y2 = b0 lnx
∞∑
n=0

xn+1

n!(n+ 1)!
+ b0

(
1− 3

4
x2 + · · ·

)
,

which is exactly the second solution obtained previously.



Pt-IA Mathematics 2021/22: Differential equations 1

V. MULTIVARIATE FUNCTIONS:
APPLICATIONS

In this final topic, we shall consider functions of more
than one variable. We shall introduce the idea of the
gradient vector, which encodes the rate of change of the
function along any direction, and see how to locate and
classify the local extrema of multivariate functions.

We shall also look at systems of coupled, first-order dif-
ferential equations where we have multiple dependent
variables coupled together.

Finally, we shall briefly introduce the idea of partial dif-
ferential equations, which are differential equations that
describe the dynamics of multivariate functions.

1 Directional derivative

Consider a function f(x, y), and an infinitesimal (vector)
displacement ds = (dx, dy). The change in f(x, y) due
to the displacement is given straightforwardly by the
multivariate chain rule:

df =
∂f

∂x
dx+

∂f

∂y
dy

= (dx, dy) ·
(
∂f

∂x
,
∂f

∂y

)
= ds ·∇f .

Here, the vector ∇f is the gradient of f , also called
gradf , with Cartestian components

∇f =

(
∂f

∂x
,
∂f

∂y

)
. (1)

If we write the displacement as ds = ds ŝ, with |ŝ| = 1,
so that ŝ is the direction and ds is the distance moved,
then

df = ds (ŝ ·∇f) .
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This motivates introducing the directional derivative as
follows.

Definition (Directional derivative). The directional deriva-
tive of f in the direction of ŝ is

df

ds
= ŝ ·∇f .

It is the rate of change of f with distance along the
direction ŝ.

The directional derivative can be used to give an alter-
native, geometric definition of the gradient vector ∇f .

Definition (Gradient vector). The gradient vector ∇f
of the function f is defined as the vector that satisfies

df

ds
= ŝ ·∇f

for all unit vectors ŝ.

In Cartesian coordinates, where ds = (dx, dy), the com-
ponents of the gradient vector reduce to Eq. (1).

If θ is the angle between ŝ and ∇f (see figure to the
right), we have

df

ds
= cos θ |∇f | .

We note from this result the following properties of the
gradient vector.

1. The direction of ∇f is the direction in which f
increases most rapidly.

2. The magnitude of ∇f is the maximum rate of change
of f :

|∇f | = max
∀θ

(
df

ds

)
.

3. If ŝ is parallel to contours of f , then

0 =
df

ds
= ŝ ·∇f .

Hence, ∇f is perpendicular to contours of f(x, y).
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2 Stationary points

There is always at least one direction in which df/ds =
0, i.e., tangent to the local contour of f .

Stationary points have df/ds = 0 for all directions.
Since

df

ds
= ŝ ·∇f ,

we must have

∇f = 0 at stationary points.

Stationary points may be local maxima, local minima
or saddle points.

Near local maxima, the contours of f are locally elliptical
(see the top row of Fig. 1). The gradient vector points
towards a local maximum.

Near local minima, the contours of f are also locally
elliptical (see the middle row of Fig. 1). The gradient
vector points away from a local minimum.

Saddle points are stationary points that are neither local
maxima nor minima. Near saddle points, the contours of
f are locally hyperbolic (see the bottom row of Fig. 1).
Also, the contour lines of f cross at and only at saddle
points.

3 Classification of stationary points

To determine whether a stationary point is a maximum,
minimum or saddle point, we consider the behaviour
of the function in the vicinity of the point. To do so,
it is useful first to consider how to generalise Taylor
expansions to multivariate functions.



Pt-IA Mathematics 2021/22: Differential equations 4

Figure 1: Illustrations of a local maximum (top), minimum (middle)
and saddle point (bottom). The plots on the right show the contours
near the stationary point and the gradient vector.
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3.1 Taylor series for multivariate functions

Consider how a function f(x, y) varies in the vicinity
of the point x0 = (x0, y0) as we move along the straight
line through x0 in the direction of ŝ. At distance s along
this line from x0, we are at position

x(s) = x0 + sŝ ;

see the figure to the right.

Along this line, the function can be thought of as a func-
tion of s and the usual single-variable Taylor series holds,
with the derivatives replaced by the directional deriva-
tive

df

ds
= ŝ ·∇f .

It follows that

f(x0 + sŝ) = f(x0) + s
df

ds

∣∣∣∣
x0

+
1

2
s2 d

2f

ds2

∣∣∣∣
x0

+ · · ·

= f(x0) + s ŝ ·∇f |x0
+

1

2
s2 (ŝ ·∇)(ŝ ·∇)f |x0

+ · · · .

Let us write the finite displacement

δx = sŝ ,

with components δx = x(s) − x0 and δy = y(s) − y0.
Then

sŝ ·∇f = (δx) ·∇f = (δx)
∂f

∂x
+ (δy)

∂f

∂y

and

s2(ŝ ·∇)(ŝ ·∇)f = (δx ·∇)(δx ·∇)f

=

(
δx

∂

∂x
+ δy

∂

∂y

)(
δx
∂f

∂x
+ δy

∂f

∂y

)
= (δx)2∂

2f

∂x2
+ 2δxδy

∂2f

∂x∂y
+ (δy)2∂

2f

∂y2

= (δx, δy)

(
fxx fxy
fyx fyy

)(
δx
δy

)
.
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The matrix that appears here in the final line is the
Hessian matrix.

Definition (Hessian matrix). The Hessian matrix is
the matrix of second derivatives

H ≡
(
fxx fxy
fyx fyy

)
= ∇∇f .

The Hessian is a symmetric matrix since partial deriva-
tives commute, i.e., fxy = fyx.

Putting these results together, we have the multivariate
Taylor series

f(x0 + δx, y0 + δy) = f(x0, y0) +

(
δx
∂f

∂x
+ δy

∂f

∂y

)∣∣∣∣
x0,y0

+
1

2

(
(δx)2∂

2f

∂x2
+ 2δxδy

∂2f

∂x∂y
+ (δy)2∂

2f

∂y2

)∣∣∣∣
x0,y0

+ · · · .
We can also write this in coordinate-free form as

f(x0 +δx) = f(x0)+δx · (∇f)|x0
+

1

2
δx (∇∇f)|x0

δxT

+ · · · .

3.2 Nature of stationary points and the Hessian

Recall that for functions of one variable, e.g., f(x), if
the second derivative d2f/dx2 > 0 at a stationary point
then it is a minimum, while if d2f/dx2 < 0 it is a maxi-
mum. In this section, we develop the equivalent results
for multivariate functions.

At a stationary point x0, we know that ∇f = 0. It
follows that in the vicinity of x0, we have

f(x) = f(x0) +
1

2
δxH δxT + · · · , (2)

where δx = x−x0 and the Hessian matrix H is evaluated
at x0.
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Definition (Positive-definite and negative-definite ma-
trices). A (real) symmetric matrix H is positive definite
if

xHxT > 0

for all non-zero (real) row vectors x. Similarly, H is
negative definite if

xHxT < 0

for all such x. A matrix that is neither postive definite
nor negative definite is sometimes called indefinite.

It follows that if the Hessian matrix is positive definite
at a stationary point, then δxH δxT > 0 for all non-zero
δx. Equation (2) then implies that f(x) > f(x0) for all
x sufficiently close to x0. This is just the definition of a
local minimum, so we see that

H positive definite ⇒ local minimum.

Similarly, if H is negative definite, then δxH δxT < 0 for
all non-zero δx and so f(x) < f(x0) in the vicinity of
x0. The stationary point is therefore a local maximum:

H negative definite ⇒ local maximum.

If the matrix is indefinite, the stationary point may be
a maximum, minimum or saddle (see below).

3.2.1 Definiteness and the eigenvalues

How can we determine whether a symmetric matrix is
positive definite, negative definite or indefinite? As you
know from Vectors and Matrices, any real symmetric
matrix can be diagonalised by a suitable orthogonal trans-
formation. Using coordinates along the principal axes,
we have

δxH δxT = (δx1, δx2, . . . , δxn)


λ1

λ2
. . .

λn




δx1
δx2

...
δxn

 ,
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where we have generalised to a function of n variables.
The eigenvalues {λi} are real since the matrix H is real
symmetric.

If δxH δxT > 0 for all non-zero δx, we see that we need
all the eigenvalues to be positive. It follows that

H positive definite ⇔ all λi > 0.

Similarly,

H negative definite ⇔ all λi < 0.

On the other hand, if all the eigenvalues are non-zero
but have mixed signs, then δxH δxT can be positive,
negative or zero depending on the direction. This case
corresponds to the stationary point being a saddle point.

If any of the eigenvalues of the Hessian are zero, fur-
ther analysis (e.g., higher terms in the Taylor series) is
needed to determine the nature of the stationary point.
For example, the function

f(x, y) = x2 + y4

has a (global) minimum at x = 0, y = 0. The Hessian is

H(x, y) =

(
2 0
0 12y2

)
and so reduces to diag(2, 0) at the stationary point. The
eigenvalues there are 2 and 0.

3.2.2 Definiteness and the signature of the Hessian

There is an alternative way to establish if the Hessian
matrix is positive or negative definite, using what is
called the signature of the matrix. This avoids having
to calculate the eigenvalues directly.
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Definition (Signature of Hessian matrix). The signa-
ture of H is the pattern of the signs of the ordered sub-
determinants of its leading principal minors. For a func-
tion of n variables, f(x1, x2, . . . , xn), these subdetermi-
nants are

fx1x1︸ ︷︷ ︸
|H1|

,

∣∣∣∣ fx1x1 fx1x2

fx2x1 fx2x2

∣∣∣∣︸ ︷︷ ︸
|H2|

,

∣∣∣∣∣∣
fx1x1 fx1x2 fx1x3

fx2x1 fx2x2 fx2x3

fx3x1 fx3x2 fx3x3

∣∣∣∣∣∣︸ ︷︷ ︸
|H3|

, . . . , |Hn| = |H| .

It can be shown (Sylvester’s criterion) that

H positive definite ⇔ signature is +,+, . . . ,+

and

H negative definite ⇔ signature is −,+, . . . , (−1)n.

It is straightforward to establish the forward implica-
tions here, for example that H being positive definite
implies the +,+, . . . ,+ signature. If H is positive def-
inite, then so too are all its principal minors. This fol-
lows from considering the quadratic form xHxT > 0
for vectors of the form x = (x1, x2, 0, . . . , 0), for exam-
ple. In this case, only the leading principal minor H2

is involved and so it must also be positive definite.1 As
all the principal minors are positive definite, they all
have only positive eigenvalues and hence each has posi-
tive determinant. This establishes that the signature is
+,+, . . . ,+. Similarly, if H is negative definite, so too
are all its leading principal minors. It follows that all
have only negative eigenvalues, and so the sign of |Hm|
for m = 1, . . . , n is (−1)m.

It takes more work to prove the converses in Sylvester’s
criterion (see non-examinable section below).

1This result means that if the quadratic function xHxT has a minimum at x = 0,
it is also a minimum when the function is restricted to any lower-dimensional subspace
that includes the origin. (In two dimensions, these would be straight lines through
the origin.)



Pt-IA Mathematics 2021/22: Differential equations 10

Sylvester’s criterion (non-examinable)

Let us first sketch the proof of the converse in Sylvester’s criterion for
the positive-definite case. We aim to show that if the subdeterminants
of the leading principal minors of a real-symmetric n× n matrix H are
all positive, then H is positive definite. We start with H1, which has a
single element h11. If |H1| > 0, then h11 > 0 and H1 is positive definite.

We next show that if Hk is positive definite, and |Hk+1| > 0, then Hk+1

is also positive definite. If |Hk+1| > 0, then its eigenvalues are either
all positive, or all but two, four, etc., are positive and two, four, etc.,
are negative. We shall prove that it is not possible to have two or more
negative eigenvalues by contradiction. Suppose that Hk+1 does have two
or more negative eigenvalues. Let two of the associated eigenvectors be
u and v, with components ui and vi for i = 1, 2, . . . , k + 1. Since these
are the eigenvectors of a real-symmetric matrix, they may always be
chosen to be orthogonal. Consider now the (row) vector

w = vk+1u− uk+1v ,

which by construction has no k + 1 component. It follows that

wHk+1 wT = (vk+1)
2 uHk+1 uT + (uk+1)

2 vHk+1 vT < 0 ,

since u and v are eigenvectors of Hk+1 with negative eigenvalues. How-
ever, since w has no k + 1 component, evaluating wHk+1 wT amounts
to using (w1, w2, · · · , wk) in the quadratic form constructed from Hk.
As Hk is positive definite, wHk+1 wT > 0 so we have a contradiction.
It follows that all the eigenvalues of Hk+1 are positive and so it is a
positive-definite matrix.

Working through H1, H2 up to Hn = H, we see that if all have positive
determinant, then they are all positive definite too. This establishes the
converse in Sylvester’s criterion for the positive-definite case.

To prove the negative-definite case, suppose that the determinants of
the leading principal minors of the real-symmetric n× n matrix H have
signature −,+, . . . , (−1)n. Consider the matrix −H. Since multiplying
a k × k matrix by −1 changes the determinant by (−1)k, the matrix
−H will have signature +,+, . . . ,+. As we have shown above, such a
matrix must be positive definite. As −H is positive definite, H must be
negative definite.

3.3 Contours near stationary points

Consider a function f(x, y) with a stationary point at
(x0, y0). Denote the Hessian matrix there by H, and
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adopt coordinates with axes aligned with the principal
axes of H. In these coordinates,

H =

(
λ1 0
0 λ2

)
,

where λ1 and λ2 are the eigenvalues, which we shall as-
sume are non-zero. If we write

x = x0 + (ξ, η) ,

then in the vicinity of x0

f(x) ≈ f(x0) +
1

2

(
λ1ξ

2 + λ2η
2
)
.

The contours of f therefore locally satisfy

λ1ξ
2 + λ2η

2 = const. (3)

At a maximum or minimum, the eigenvaluesall have the
same sign so the contours given by Eq. (3) are locally el-
liptical. At a saddle point, the eigenvalues have opposite
signs and so the contours are locally hyperbolic.

Example. Consider the function

f(x, y) = 4x3 − 12xy + y2 + 10y + 6 .

We have

fx = 12x2 − 12y ,

fy = −12x+ 2y + 10 .

At stationary points, fx = 0 and fy = 0. The first of
these gives y = x2 and the second 6x = y + 5. Substi-
tuting for y = x2 we have

x2 − 6x+ 5 = 0 ⇒ x = 1 or x = 5 .

The stationary points are therefore (1, 1) and (5, 25).

Evaluating the second derivatives, we have

fxx = 24x ,

fxy = −12 ,

fyy = 2 .
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Consider first the point (1, 1). The Hessian there is

H =

(
24 −12
−12 2

)
.

The subdeterminants of the leading principal minors are
|H1| = 24 and |H2| = |H| = −96. The signature is
+,− and so H is neither positive definite nor negative
definite. In this two-dimensional case, we know from
|H| < 0 that the eigenvalues are opposite in sign and so
we have a saddle point.

At the other stationary point, (5, 25), we have

H =

(
120 −12
−12 2

)
.

The subdeterminants of the leading principal minors are
now |H1| = 120 and |H2| = |H| = 96. The signature is
+,+ and so we know from Sylvester’s crterion that H is
positive definite. We see that (5, 25) is a local minimum.

To determine the orientation of the contours near the
stationary points, consider, for example, the saddle point
(1, 1). Writing

(x, y) = (1, 1) + (δx, δy) ,

the contours locally have

fxx(δx)2 + 2fxyδxδy + fyy(δy)2 = const.

⇒ 12(δx)2 − 12δxδy + (δy)2 = const.

The intersecting straight-line contours through the sad-
dle point (which are also the asymptotes of the neigh-
bouring hyperbolic contours) are therefore described by

12(δx)2− 12δxδy+ (δy)2 = 0 ⇒ δy = (6± 2
√

6)δx .

To sketch the contours, we can draw what they look like
near the stationary points and then try to join them
togther noting they only cross at the saddle point. The
contours are shown in Fig. 2.
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Figure 2: Contours of the function f(x, y) = 4x3 − 12xy+ y2 + 10y+ 6.
(The contour levels are not equally spaced.) Note the shape of the
contours close to the saddle point at (1, 1) and the local minimum at
(5, 25).



Pt-IA Mathematics 2021/22: Differential equations 14

4 Systems of linear differential equations

In this section we consider the behaviour of systems of
first-order linear differential equations, where we have
multiple dependent variables that may be coupled to
each other.

Consider two functions, y1(t) and y2(t), which satisfy

ẏ1 = ay1 + by2 + f1(t) , (4)

ẏ2 = cy1 + dy2 + f2(t) , (5)

where a, b, c and d are constants. We can write these in
vector form as

Ẏ = MY + F ,

where

Y =

(
y1

y2

)
, M =

(
a b
c d

)
, F =

(
f1

f2

)
.

One way to solve Eqs (4) and (5) is to convert them
into a higher-order equation for one of the dependent
variables. For example, differentiating Eq. (4), we have

ÿ1 = aẏ1 + bẏ2 + ḟ1

= aẏ1 + b (cy1 + dy2 + f2) + ḟ1

= aẏ1 + bcy1 + d (ẏ1 − ay1 − f1) + bf2 + ḟ1 ,

so that

ÿ1 − (a+ d)ẏ1 + (ad− bc)y1 = bf2 − df1 + ḟ1 .

This is a linear, second-order differential equation with
constant coefficients, which we know how to solve.

However, it is often more convenient to solve the first-
order system of equations directly with the matrix meth-
ods developed in the rest of this section, rather than
solving the higher-order equation. Indeed, we often go
the other way and convert a linear higher-order differen-
tial equation to a system of (coupled) linear first-order
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equations. This is particularly the case when solving
equations numerically.

For example, the second-order equation

ÿ + αẏ + βy = f ,

where α and β are constant coefficients, can be recast
as a first-order system by writing

y1 = y and y2 = ẏ ,

so that

ẏ1 = y2 ,

ẏ2 = ÿ = −αy2 − βy1 + f .

In matrix form, this is

Ẏ =

(
0 1
−β −α

)
Y +

(
0
f

)
with Y = (y1, y2)

T .

4.1 Matrix methods

To solve a linear system of equations of the form

Ẏ = MY + F(t) ,

where the matrix M has constant elements, we proceed
as follows.

1. We write Y = Yc + Yp, where the complementary
solution Yc satisfies the homogeneous equation

Ẏc = MYc . (6)

2. We look for a complementary solution of the form
Yc = veλt, where v is a constant vector. For this
to satisfy Eq. (6), we must have

Mv = λv ,
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i.e., v must be an eigenvector of M and then λ is the
associated eigenvalue. For a system of n equations,
there will be n such complementary solutions if the
eigenvalues are all distinct (in which case there are
n linearly independent eigenvectors). Any linear
combination of these is a solution of Eq. (6).

3. Finally, we find a particular solution, Yp, which sat-
isfies the full system of forced equations. Its form
will depend on the forcing vector F(t).

Example. Consider the linear system

Ẏ =

(
−4 24
1 −2

)
︸ ︷︷ ︸

M

Y +

(
4
1

)
et . (7)

We look for a complementary solution of the form Yc =
veλt. The eigenvalues λ of the matrix M follow from
det(M− λI) = 0, which gives

(λ+ 8)(λ− 2) = 0 ⇒ λ = 2,−8 .

The associated eigenvectors are

v1 =

(
4
1

)
for λ1 = 2

and

v2 =

(
−6
1

)
for λ2 = −8

The general complementary solution is therefore

Yc = A

(
4
1

)
e2t +B

(
−6
1

)
e−8t ,

where A and B are constants.

For the particular solution, we try Yp = uet, inspired
by the time dependence of the forcing term. We require

u = Mu +

(
4
1

)
⇒

(
5 −24
−1 3

)
u =

(
4
1

)
⇒ u = −1

9

(
3 24
1 5

)(
4
1

)
= −

(
4
1

)
.

We will only consider the 
non-degenerate cases where 
we have n distinct eigenvalues.

1 is not an eigenvalue, 
so the inverse exists
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It follows that the general solution of the full system is

Y = A

(
4
1

)
e2t +B

(
−6
1

)
e−8t −

(
4
1

)
et .

Note that if the time dependence of the forcing is eλt,
where λ is an eigenvalue of M, then we should instead
look for a particular solution

Yp = uteλt .

4.2 Non-degenerate phase portraits

The phase space for a system of n first-order differential
equations is the n-dimensional space with points Y =
(y1, y2, . . . , yn)

T .

A phase portrait shows the solution trajectories in this
space.

We shall consider the homogeneous equation

Ẏ = MY ,

which clearly has a fixed point at Y = 0. For n = 2, the
general solution of the equation in the non-degenerate
case, λ1 6= λ2, is

Y(t) = v1e
λ1t + v2e

λ2t , (8)

where v1 and v2 are eigenvectors of M and λ1 and λ2

are the associated eigenvalues.

We shall only consider the possible forms of the phase
portraits in the cases λ1 6= 0 and λ2 6= 0 (and λ1 6= λ2).

2

2For the degenerate case λ1 = λ2 = λ (with λ real), in general M 6= λI and there
is only a single eigenvector v. The second solution is then of the form

Y(t) = eλt (tv + w) ,

where the vector w satisfies (M − λI)w = v. Note that w is uniquely determined
by this equation up to addition of multiples of v, but such additional terms simply
replicate the first solution. For the case when one of the eigenvalues vanishes, λ1 = 0
say, the general solution is of the form

Y(t) = v1 + v2e
λ2t .

The A, B terms that scale the 
complementary functions have 
been absorbed into the 
eigenvectors.
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In the non-degenerate case, there are three distinct be-
haviours depending on the eigenvalues λ1 and λ2.

Case 1: λ1 and λ2 real and of opposite signs. Without
loss of generality, we can take λ1 > 0 and λ2 < 0. The
eigenvectors v1 and v2 are necessarily real in this case.
If Y starts out displaced from the origin along v1, it
remains so and moves outwards as t increases (since λ1 >
0). On the other hand, if Y starts out displaced along
v2, it will move inwards along this direction approaching
Y = 0 as t→∞.

This case corresponds to a saddle node. An example
phase portrait is shown to the right, corresponding to
Eq. (7) with no forcing term. The arrows show the di-
rection of evolution with increasing t. The curved tra-
jectories in this figure can be added based on the flow di-
rection along the eigenvectors. As t→∞, these curved
lines become parallel to the eigenvector v1 with positive
eigenvalue, while as t → −∞ they become parallel to
v2.

Case 2: λ1 and λ2 real and of the same sign. With-
out loss of generality, we can take |λ1| > |λ2|. Again,
the eigenvectors v1 and v2 are necessarily real and if Y
starts out displaced along these it will continue so, mov-
ing outwards as t increases for λ1 > 0 and inwards for
λ1 < 0.

This case corresponds to a stable node if λ1 and λ2 < 0,
and an unstable node if λ1 and λ2 > 0. An unstable node
is illustrated in the figure to the right. Here, a generic
trajectory is parallel to v1 as t → ∞ (as λ1 > λ2) and
approaches the origin along v2 as t → −∞. In the
unstable case, the directions of the arrows are reversed.

Case 3: λ1 and λ2 complex conjugate pairs. In this case,
the eigenvectors are necessarily complex (as the matrix
M is real) and are complex conjugates of each other:
v2 = v∗1. Straight-line trajectrories are not possible.
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The general solution, Eq. (8), for real Y can be written
as

Y(t) = cv1e
Re(λ1)teiIm(λ1)t + c∗v∗1e

Re(λ1)te−iIm(λ1)t

= 2eRe(λ1)t{[c1Re(v1)− c2Im(v1)] cos [Im(λ1)t]

− [c1Im(v1) + c2Re(v1)] sin [Im(λ1)t]} ,

where the complex constant c = c1 + ic2, with c1 and c2

real.

Trajectories generally spiral around the origin. If
Re(λ1) < 0, we have a stable spiral, whereby the tra-
jectories spiral into the origin as t → ∞ (see the figure
to the right for an example). For Re(λ1) > 0, we have
an unstable spiral and the trajectories spiral outwards
with increasing t.

However, if Re(λ1) = 0 we have a centre and the so-
lutions are periodic giving closed trajectories in phase
space. These are generally elliptical and have common
centres at the origin (see figure to the right).

To find the sense of rotation, it is sufficient to deter-
mine Ẏ at one point. For example, if we evaluate Ẏ at
Y = (1, 0)T , then ẏ2 > 0 there implies counter-clockwise
rotation.

5 Nonlinear dynamical systems

In this section, we briefly introduce systems of nonlin-
ear differential equations. In particular, we shall see how
the techniques of the previous section for systems of lin-
ear equations can be used to investigate the stability of
equilibrium points of the nonlinear system.
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Consider an autonomous system of two nonlinear, first-
order differential equations:

ẋ = f(x, y) ,

ẏ = g(x, y) .
(9)

The functions f(x, y) and g(x, y) are general, nonlinear
functions of the dependent variables x and y but are
independent of time t (hence the system is autonomous).

Solving such systems of equations can be very difficult.
However, we can learn a lot about the phase-space tra-
jectories of the solutions of these equations by studying
the equilibrium points and their stability.

5.1 Equilibrium points

Definition (Equilibrium point). An equilibrium point
(or fixed point) of the system of equations (9) is a point
at which ẋ = ẏ = 0.

If (x0, y0) is a fixed point of Eq. (9), this requires

f(x0, y0) = 0 and g(x0, y0) = 0 .

We must solve these equations simultaneously to deter-
mine (x0, y0).

To determine the stability of an equilibrium point, we
conduct a perturbation analysis. Let

x(t) = x0 + ξ(t) and y(t) = y0 + η(t) ,

where ξ and η are small perturbations around the fixed
point. Substituting into Eq. (9), we have, for example,

ξ̇ = f(x0 + ξ, y0 + η)

≈ f(x0, y0) + ξ
∂f

∂x
(x0, y0) + η

∂f

∂y
(x0, y0)

≈ ξ
∂f

∂x
(x0, y0) + η

∂f

∂y
(x0, y0) .
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Here, we have performed a multivariate Taylor expan-
sion and dropped higher-order terms. Similarly,

η̇ ≈ ξ
∂g

∂x
(x0, y0) + η

∂g

∂y
(x0, y0) .

We can combine these linear equations into the vector
equation (

ξ̇
η̇

)
=

(
fx fy
gx gy

)(
ξ
η

)
, (10)

where the matrix of first derivatives is evaluated at (x0, y0).
This is a linear system of first-order differential equa-
tions and we can apply the techniques of Sec. 4 to de-
termine the nature of the equilibrium point. In particu-
lar, the stability is determined by the eigenvalues of the
matrix of first derivatives.

Example (Population dynamics: predator–prey system).
Consider an ecosytem with predators and prey. Let the
number of prey at time t be x(t) and the number of
predators be y(t). We model the dynamics of the prey
as

ẋ = αx− βx2 − γxy , (11)

where α, β and γ are positive constants. In the ab-
sence of predators (y = 0), this is the logistic differen-
tial equation of Topic III, where, recall, α describes the
excess rate of births over natural deaths and the term
−βx2 increases the death rate at high x to account for
competition over some scarce resource. The term −γxy
in Eq. (11) accounts for the prey being killed by the
predators; we assume that the predators have infinite
appetite, so consume all prey that they encounter.

We model the dynamics of the predators as

ẏ = εxy − δy ,
where ε and δ are further positive constants. The first
term on the right is the birth rate of predators, which
increases if more prey is available to sustain the popu-
lation. The final term is the natural death rate of the
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predators. If there are no prey (x = 0), the number of
predators decays exponentially.

We shall consider the following specific example:

ẋ = 8x− 2x2 − 2xy ,

ẏ = xy − y . (12)

The equilibrium points of this nonlinear, first-order au-
tonomous system are where

2x(4− x− y) = 0 and y(x− 1) = 0 .

The first equation requires either x = 0 or x = 4− y. In
the former case, the second equation then requires y = 0
so we have an equilibrium point at (0, 0). On the other
hand, if x = 4− y, the second equation reduces to

y(3− y) = 0 ,

so either y = 0 or y = 3. We thus have two further
equilibrium points: (4, 0) and (1, 3).

We consider the stability of these in turn using Eq. (10).
Noting that

f(x, y) = 8x− 2x2 − 2xy and g(x, y) = xy − y ,
the required derivatives evaluate to

fx = 8− 4x− 2y fy = −2x ,

gx = y gy = x− 1 .

(0,0). Perturbations around this point evolve as(
ξ̇
η̇

)
=

(
8 0
0 −1

)(
ξ
η

)
.

The eigenvalues of the matrix are clearly 8 and −1 and
associated eigenvectors are (1, 0)T and (0, 1)T . As the
eigenvalues are real and of opposite sign, the equilib-
rium point is a saddle node. Perturbations along the
x-direction move away from (0, 0), while those along the
y-direction move towards it (see figure to the right).
Note that if motion is restricted to y = 0, we recover
the unstable nature of x = 0 for the logistic differential
equation .
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(4,0). Perturbations around this point evolve as(
ξ̇
η̇

)
=

(
−8 −8
0 3

)(
ξ
η

)
.

The eigenvalues of the matrix are −8 and 3 and the
eigenvectors are (1, 0)T and (8,−11)T , respectively. We
see that this is also a saddle node, with displacements
along the x-direction moving back towards the equil-
brium point, but those along (8,−11)T moving away.
For motion restricted to y = 0, we recover the stable
nature of the equilibrium point x = 4 for the logistic
differential equation.

(1,3). Finally, perturbations around this point evolve
as (

ξ̇
η̇

)
=

(
−2 −2
3 0

)(
ξ
η

)
.

The eigenvalues of the matrix are −1± i
√

5. Since these
are a complex-conjugate pair with negative real part, the
equilibrium point is a stable spiral. We can determine
the sense of rotation by considering (ξ, η) = (1, 0). For
such a displacement, η̇ = 3. Since this is positive, the
spiral is traversed anti-clockwise (see figure to the right).

The full phase portrait is shown in Fig. 3. The equilib-
rium (saddle) points at (0, 0) and (4, 0) are unstable and
the introduction of any predators around these points
will drive the system to spiral towards the stable equi-
librium point at (1, 3).

6 Partial differential equations

In this final section, we very briefly introduce partial dif-
ferential equations, where we have multiple independent
variables.

We shall illustrate some of the key ideas using the simple
examples of the wave equation and the diffusion equa-
tion.
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Figure 3: Phase portrait for the predator–prey system described by
Eq. (12). Note the stable spiral equilibrium point at (1, 3), where the
number of prey x = 1 and predators y = 3.
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6.1 First-order wave equation

Consider a function ψ(x, t), depending on position x and
time t, which satisfies the first-order wave equation

∂ψ

∂t
− c∂ψ

∂x
= 0 . (13)

Here, c is a constant with dimensions of speed. We shall
see that this equation describes waves that propagate to
the left with speed c.

We attempt to solve Eq. (13) with the method of charac-
teristics. To see how this works, consider how ψ varies
along the path x(t) so that ψ = ψ(x(t), t) can be consid-
ered a function of t. Using the multivariate chain rule,
we have

dψ

dt
=
∂ψ

∂t
+
∂ψ

∂x

dx

dt

=
∂ψ

∂x

(
c+

dx

dt

)
,

where we have used Eq. (13) to substitute for ∂ψ/∂t.

If we choose a path with

dx

dt
= −c ,

we see that dψ/dt = 0 along the path and so ψ is con-
stant. These paths are given by

x(t) = x0 − ct ,

where {x0} labels the paths. These paths are called the
characteristics of the partial differential equation (13)
and are illustrated in the figure to the right.

As ψ is constant along the characteristics, the general
solution is ψ(x, t) = f(x0), where x0 = x + ct, for some
arbitrary function f . This gives

ψ(x, t) = f(x+ ct) . (14)

As t increases, we are simply taking the x-dependence
of ψ at t = 0 and translating it to the left by ct. We see

Left-moving 
wavelike solution
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that Eq. (14) is the solution of our partial differential
equation (13) with initial condition ψ(x, t = 0) = f(x).

Example (unforced wave equation). Consider

∂ψ

∂t
− c∂ψ

∂x
= 0 with ψ(x, 0) = x2 − 3 .

The general solution of the partial differential equation
is ψ(x, t) = f(x+ ct) and imposing the initial condition
gives

ψ(x, t) = (x+ ct)2 − 3 .

Example (forced wave equation). We can also use the
method of characteristics to solve forced wave equations
such as

∂ψ

∂t
+ 5

∂ψ

∂x
= e−t with ψ(x, 0) = e−x

2

.

The characteristics have dx/dt = 5, so x = x0 + 5t.
Along these, the partial differential equation reduces to

dψ

dt
= e−t ,

with solution
ψ = f(x0)− e−t ,

for some arbitrary function f(x0). Finally, imposing the
boundary condition and noting that x = x0 at t = 0, we
have

ψ(x, 0) = f(x0)− 1 = e−x
2
0 ⇒ f(x0) = 1 + e−x

2
0 ,

so that
ψ(x, t) = 1 + e−(x−5t)2 − e−t .

6.2 Second-order wave equation

The first-order wave equation admits solutions that prop-
agate in only one direction. In practice, most systems
supporting wavelike solutions allow these to propagate
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Figure 4: Forces acting on a short segment of length δx of a string held
under tension T , when the sring is displaced vertically by ψ(x, t).

in either direction. The relevant partial differential equa-
tion is then the second-order wave equation:

∂2ψ

∂t2
− c2∂

2ψ

∂x2
= 0 . (15)

Aside: waves on a string (non-examinable)

As an example of a system described by the second-order wave equation,
consider the vertical displacement ψ(x, t) of a string held under tension
T . A short length δx of the string at x is pulled by the tension at each
of its ends, with the forces acting along the tangents to the string there.
Assuming the slope of the string is always small and the tension remains
at T , the vertical component of the force at x from the string to the right
is approximately T∂ψ/∂x; see Fig. 4.

The net vertical force on δx is approximately

T
∂ψ

∂x
(x+ δx, t)− T ∂ψ

∂x
(x, t) = Tδx

∂2ψ

∂x2
(x, t) +O(δx2) .

This must equal the product of the mass of the string segment and its
acceleration ∂2ψ/∂t2. If the mass per unit length is µ, we therefore have

Tδx
∂2ψ

∂x2
+O(δx2) = µδx

∂2ψ

∂t2
.

Dividing by δx and taking the limit δx→ 0, we have

∂2ψ

∂t2
=
T

µ

∂2ψ

∂x2
,

which is a wave equation with wave speed c =
√
T/µ.
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To solve the second-order wave equation (15), we note
that it can be factored as(

∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
ψ = 0

since partial derivatives commute. The two operators
here commute so both f(x+ ct), which is nulled by the
first factor, and g(x − ct), nulled by the second, are
solutions, where f and g are arbitrary functions. As
the equation is linear, the superposition of these is also
a solution. We thus have the general solution of the
second-order wave equation:

ψ(x, t) = f(x+ ct) + g(x− ct) . (16)

This is a superposition of left- and right-moving waves.

We can show that this is the most general solution by
changing independent variables from x and t to

ξ = x+ ct and η = x− ct .

The coordinates ξ and η are constants along the charac-
teristics of ∂/∂t−c∂/∂x and ∂/∂t+c∂/∂x, respectively.
Using the multivariate chain rule, we have

∂

∂x
=

∂

∂ξ
+

∂

∂η
,

∂

∂t
= c

∂

∂ξ
− c ∂

∂η
.

It follows that

∂

∂t
− c ∂

∂x
= −2c

∂

∂η
,

∂

∂t
+ c

∂

∂x
= 2c

∂

∂ξ
,

so that

0 =

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
ψ = −4c2 ∂

2ψ

∂η∂ξ
.

Integrating twice, the most general solution of this is

ψ = f(ξ) + g(η) ,



Pt-IA Mathematics 2021/22: Differential equations 29

in agreement with Eq. (16).

Example. Consider

∂2ψ

∂t2
− c2∂

2ψ

∂x2
= 0 ,

with initial conditions3 at t = 0

ψ(x, 0) =
1

1 + x2
and

∂ψ

∂t
(x, 0) = 0 .

This might describe a long string displaced vertically by
1/(1 + x2) at t = 0 and released from rest.

The general solution of the wave equation is

ψ(x, t) = f(x+ ct) + g(x− ct) .
Evaluating this at t = 0, we must have

f(x) + g(x) =
1

1 + x2
. (17)

The second initial condition gives

∂ψ

∂t
(x, 0) = cf ′(x)− cg′(x) = 0 ,

so that f(x) = g(x) + A, where A is a constant. Com-
bining with Eq. (17), we have

f(x) =
1

2 (1 + x2)
+
A

2
,

g(x) =
1

2 (1 + x2)
− A

2
.

The constant A cancels on forming f(x+ ct) + g(x− ct)
to leave the solution

ψ(x, t) =
1

2

[
1

1 + (x+ ct)2 +
1

1 + (x− ct)2

]
.

Note how the initial disturbance separates into a left-
and right-moving wave, each with half the amplitude of
the initial disturbance, propagating at speed c; see the
figure to the right.

3A second-order ordinary differential equation needs two initial conditions, say
the initial value of the dependent variable and its derivative. The second-order wave
equation is second-order in time derivatives and so we need to give ψ and its time
derivative ∂ψ/∂t at each value of x to specify the solution.
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6.3 The diffusion equation

A second important example of a partial differential
equation is the diffusion equation. For example, the tem-
perature T of a one-dimensional system evolves due to
thermal conduction (diffusion of thermal energy) as

∂T

∂t
= κ

∂2T

∂x2
. (18)

The positive quantity κ is a constant and is known as
the (thermal) diffusion coefficient.

Example. The temperature T (x, t) in an infinitely long
rod with one end at x = 0 satisfies the diffusion equa-
tion (18). For t > 0, the temperature at x = 0 is main-
tained at 1. As t → 0+, T = 0 for x > 0 so the rod is
initially cold except at x = 0.

It is possible to find similarity solutions of the form
T (x, t) = Θ(η), where

η ≡ x

2
√
κt

(t > 0) .

The form of η is motivated by dimensional analysis of
the diffusion equation. Using the chain rule, we have

∂T

∂t
=
∂η

∂t

dΘ

dη
= − η

2t

dΘ

dη

and
∂T

∂x
=
∂η

∂x

dΘ

dη
=

1

2
√
κt

dΘ

dη
so

∂2T

∂x2
=

1

2
√
κt

∂η

∂x

d2Θ

dη2
=

1

4κt

d2Θ

dη2
.

The diffusion then becomes an ordinary differential equa-
tion for Θ(η):

d2Θ

dη2
+ 2η

dΘ

2η
= 0 . (19)

Equation (19) is a separable first-order equation for dΘ/dη
and is solved by

dΘ

dη
= Ae−η

2

,
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where A is a constant. Integrating again gives

Θ(η) = A

∫ η

0

e−u
2

du+B ,

where B is a further constant. The integral here can be
written in terms of the error function, defined by

erf(x) =
2√
π

∫ x

0

e−u
2

du ;

it satisfies erf(x)→ 1 as x→∞. We have

Θ(η) = C erf(η) +B ,

with C =
√
πA/2.

We now impose the boundary conditions. As t→ 0+ for
x > 0, we have η →∞. We require T → 0 in this limit,
so B +C = 0. At x = 0 for t > 0, we have η = 0. Here,
T = 1 so we require B = 1. It follows that the complete
solution for t > 0 is

T (x, t) = 1− erf

(
x

2
√
κt

)
.

This solution is shown for several values of t in the fig-
ure to the right. Note how the temperature tends to
uniform, T = 1, as t→∞.
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